Abstract
SUMMARY Non-parametric regression using cubic splines is an attractive, flexible and widely-applicable approach to curve estimation. Although the basic idea was formulated many years ago, the method is not as widely known or adopted as perhaps it should be. The topics and examples discussed in this paper are intended to promote the understanding and extend the practicability of the spline smoothing methodology. Particular subjects covered include the basic principles of the method; the relation with moving average and other smoothing methods; the automatic choice of the amount of smoothing; and the use of residuals for diagnostic checking and model adaptation. The question of providing inference regions for curves – and for relevant properties of curves – is approached via a finite-dimensional Bayesian formulation.
Keywords
Affiliated Institutions
Related Publications
Spline Smoothing: The Equivalent Variable Kernel Method
The spline smoothing approach to nonparametric regression and curve estimation is considered. It is shown that, in a certain sense, spline smoothing corresponds approximately to...
Linear Smoothers and Additive Models
We study linear smoothers and their use in building nonparametric regression models. In the first part of this paper we examine certain aspects of linear smoothers for scatterpl...
Multivariate Adaptive Regression Splines
A new method is presented for flexible regression modeling of high dimensional data. The model takes the form of an expansion in product spline basis functions, where the number...
Smooth Skyride through a Rough Skyline: Bayesian Coalescent-Based Inference of Population Dynamics
Kingman's coalescent process opens the door for estimation of population genetics model parameters from molecular sequences. One paramount parameter of interest is the effective...
Testing the Conditional Independence and Monotonicity Assumptions of Item Response Theory
When item characteristic curves are nondecreasing functions of a latent variable, the conditional or local independence of item responses given the latent variable implies nonne...
Publication Info
- Year
- 1985
- Type
- article
- Volume
- 47
- Issue
- 1
- Pages
- 1-21
- Citations
- 1115
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1111/j.2517-6161.1985.tb01327.x