Abstract
A new computational method for the maximum likelihood solution in factor analysis is presented. This method takes into account the fact that the likelihood function may not have a maximum in a point of the parameter space where all unique variances are positive. Instead, the maximum may be attained on the boundary of the parameter space where one or more of the unique variances are zero. It is demonstrated that such improper (Heywood) solutions occur more often than is usually expected. A general procedure to deal with such improper solutions is proposed. The proposed methods are illustrated using two small sets of empirical data, and results obtained from the analyses of many other sets of data are reported. These analyses verify that the new computational method converges rapidly and that the maximum likelihood solution can be determined very accurately. A by-product obtained by the method is a large sample estimate of the variance-covariance matrix of the estimated unique variances. This can be used to set up approximate confidence intervals for communalities and unique variances.
Keywords
Affiliated Institutions
Related Publications
Fitting the Factor Analysis Model
When the covariance matrix Σ(p×P) does not satisfy the formal factor analysis model for m factors, there will be no factor matrix Λ(p×m) such that γ=(Σ-ΛΛ′) is diagonal. The fac...
Maximum-Likelihood Estimation of Parameters Subject to Restraints
The estimation of a parameter lying in a subset of a set of possible parameters is considered. This subset is the null space of a well-behaved function and the estimator conside...
Applied Linear Regression
Preface.1 Scatterplots and Regression.1.1 Scatterplots.1.2 Mean Functions.1.3 Variance Functions.1.4 Summary Graph.1.5 Tools for Looking at Scatterplots.1.5.1 Size.1.5.2 Transfo...
Approximate Inference in Generalized Linear Mixed Models
Statistical approaches to overdispersion, correlated errors, shrinkage estimation, and smoothing of regression relationships may be encompassed within the framework of the gener...
A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models
Group-level variance estimates of zero often arise when fitting multilevel or hierarchical linear models, especially when the number of groups is small. For situations where zer...
Publication Info
- Year
- 1967
- Type
- article
- Volume
- 32
- Issue
- 4
- Pages
- 443-482
- Citations
- 864
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1007/bf02289658