Abstract

Reforestation efforts, notably the massive Grain for Green Project (GFGP), have significantly greened China’s Loess Plateau (LP) but intensified regional water limitations. This study aims to systematically characterize the spatio-temporal dynamics and the critical legacy effects of moisture stress on eWUE to evaluate ecosystem sustainability under accelerated climate change. Using 2001–2020 MODIS GPP and ET data and the comprehensive Temperature–Vegetation–Precipitation Drought Index (TVPDI), we analyzed the trends, spatial patterns, and lagged correlations on the LP. We find the LP’s mean eWUE was 1.302 g C kg−1 H2O, exhibiting a robust increasing trend of 0.001 g C kg−1 H2O a−1 (p < 0.05), primarily driven by a faster increase in gross primary productivity (GPP) than evapotranspiration (ET). Spatially, areas with significant increases in eWUE concentrated in the afforested south and central LP. Concurrently, the region experienced a mild drought state (mean TVPDI: 0.557) with a concerning drying trend of 0.003 yeyr−1, highlighting persistent water stress. Crucially, eWUE exhibited high and spatially divergent sensitivity to drought. A striking 69.64% of the region showed a positive correlation between eWUE and the TVPDI, suggesting that vegetation may adjust its physiological functions to adapt to drought. However, this correlation varied across vegetation types, with grasslands showing the highest positive correlation (0.415) while woody vegetation types largely showed a negative correlation. Most importantly, our analysis reveals a pronounced drought legacy effect: the correlation between eWUE and drought in the previous two years was stronger than in the current year, indicating multi-year cumulative moisture deficit rather than immediate climatic forcing (precipitation and temperature). These findings offer a critical scientific foundation for optimizing water resource management and developing resilient “right tree, right place” ecological restoration strategies on the LP, mitigating the ecological risks posed by prolonged drought legacy.

Affiliated Institutions

Related Publications

Publication Info

Year
2025
Type
article
Volume
17
Issue
24
Pages
3980-3980
Citations
0
Access
Closed

External Links

Citation Metrics

0
OpenAlex

Cite This

Xuewei Bao, Wen Wang, Xiaodong Li et al. (2025). Spatio-Temporal Evolution of Ecosystem Water Use Efficiency and the Impacts of Drought Legacy on the Loess Plateau, China, Since the Onset of the Grain for Green Project. Remote Sensing , 17 (24) , 3980-3980. https://doi.org/10.3390/rs17243980

Identifiers

DOI
10.3390/rs17243980