Abstract

We present sets of special points in the Brillouin zone from which the average over the Brillouin zone of a periodic function of wave vector (e.g., energy, charge density, dipole matrix elements, etc.) can be determined in a simple and accurate way once the values of the function at these points are specified. We discuss a method for generating the special-point sets and apply it to the case of crystals with cubic and hexagonal Bravais lattices.

Keywords

Brillouin zoneBravais latticePhysicsDipolePoint (geometry)Simple (philosophy)Wave vectorHexagonal crystal systemMatrix (chemical analysis)Function (biology)Condensed matter physicsQuantum mechanicsMaterials scienceMathematicsGeometryCrystal structureChemistry

Affiliated Institutions

Related Publications

First-Principles Determination of the Soft Mode in Cubic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>ZrO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

A direct approach to calculate the phonon dispersion using an ab initio force constant method is introduced. The phonon dispersion and structural instability of cubic ${\mathrm{...

1997 Physical Review Letters 2708 citations

<i>Ab initio</i>lattice dynamics and phase transformations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Zr</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>

Zirconia, $\mathrm{Zr}{\mathrm{O}}_{2}$, is one of the most important ceramic materials in modern technology. Its versatility is closely related to phase transformations. Althou...

2005 Physical Review B 119 citations

Publication Info

Year
1973
Type
article
Volume
8
Issue
12
Pages
5747-5753
Citations
2018
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

2018
OpenAlex

Cite This

D. J. Chadi, Marvin L. Cohen (1973). Special Points in the Brillouin Zone. Physical review. B, Solid state , 8 (12) , 5747-5753. https://doi.org/10.1103/physrevb.8.5747

Identifiers

DOI
10.1103/physrevb.8.5747