Abstract
The focus of this paper is speeding up the evaluation of convolutional neural networks. While delivering impressive results across a range of computer vision and machine learning tasks, these networks are computationally demanding, limiting their deployability. Convolutional layers generally consume the bulk of the processing time, and so in this work we present two simple schemes for drastically speeding up these layers. This is achieved by exploiting cross-channel or filter redundancy to construct a low rank basis of filters that are rank-1 in the spatial domain. Our methods are architecture agnostic, and can be easily applied to existing CPU and GPU convolutional frameworks for tuneable speedup performance. We demonstrate this with a real world network designed for scene text character recognition, showing a possible 2.5x speedup with no loss in accuracy, and 4.5x speedup with less than 1% drop in accuracy, still achieving state-of-the-art on standard benchmarks.
Keywords
Affiliated Institutions
Related Publications
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion base...
A Fast Learning Algorithm for Deep Belief Nets
We show how to use “complementary priors” to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. U...
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper...
Learning Deconvolution Network for Semantic Segmentation
We propose a novel semantic segmentation algorithm by learning a deep deconvolution network. We learn the network on top of the convolutional layers adopted from VGG 16-layer ne...
GhostNet: More Features From Cheap Operations
Deploying convolutional neural networks (CNNs) on embedded devices is difficult due to the limited memory and computation resources. The redundancy in feature maps is an importa...
Publication Info
- Year
- 2014
- Type
- preprint
- Citations
- 543
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.48550/arxiv.1405.3866