Abstract
The creation and evolution of energy-density perturbations are analyzed for the "new inflationary universe" scenario proposed by Linde, and Albrecht and Steinhardt. According to the scenario, the Universe underwent a strongly first-order phase transition and entered a "de Sitter phase" of exponential expansion during which all previously existing energy-density perturbations expanded to distance scales very large compared to the size of our observable Universe. The existence of an event horizon during the de Sitter phase gives rise to zero-point fluctuations in the scalar field $\ensuremath{\varphi}$, whose slowly growing expectation value signals the transition to the spontaneous-symmetry-breaking (SSB) phase of a grand unified theory (GUT). The fluctuations in $\ensuremath{\varphi}$ are created on small distance scales and expanded to large scales, eventually giving rise to an almost scale-free spectrum of adiabatic density perturbations (the so-called Zel'dovich spectrum). When a fluctuation reenters the horizon ($\mathrm{radius}\ensuremath{\simeq}{H}^{\ensuremath{-}1}$) during the Friedmann-Robertson-Walker (FRW) phase that follows the exponential expansion, it has a perturbation amplitude ${\frac{\ensuremath{\delta}\ensuremath{\rho}}{\ensuremath{\rho}}|}_{H}=(4 or \frac{2}{5})H\frac{\ensuremath{\Delta}\ensuremath{\varphi}}{\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}({t}_{1})}$, where $H$ is the Hubble constant during the de Sitter phase (${H}^{\ensuremath{-}1}$ is the radius of the event horizon), $\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}({t}_{1})$ is the mean value of $\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}$ at the time (${t}_{1}$) that the wavelength of the perturbation expanded beyond the Hubble radius during the de Sitter epoch, $\ensuremath{\Delta}\ensuremath{\varphi}$ is the fluctuation in $\ensuremath{\varphi}$ at time ${t}_{1}$ on the same scale, and $4(\frac{2}{5})$ applies if the Universe is radiation (matter) dominated when the scale in question reenters the horizon. Scales larger than about ${10}^{15}\ensuremath{-}{10}^{16}{M}_{\ensuremath{\bigodot}}$ reenter the horizon when the Universe is matter dominated. Owing to the Sachs-Wolfe effect, these density perturbations give rise to temperature fluctuations in the microwave background which, on all angular scales \ensuremath{\gg}1\ifmmode^\circ\else\textdegree\fi{}, are $\frac{\ensuremath{\delta}T}{T}\ensuremath{\simeq}(\frac{1}{5})H\frac{\ensuremath{\Delta}\ensuremath{\varphi}}{\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}({t}_{1})}$. The value of $\ensuremath{\Delta}\ensuremath{\varphi}$ expected from de Sitter fluctuations is $O(\frac{H}{2\ensuremath{\pi}})$. For the simplest model of "new inflation," that based on an SU(5) GUT with Coleman-Weinberg SSB, $\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}({t}_{1})\ensuremath{\ll}{H}^{2}$ so that $\frac{\ensuremath{\delta}T}{T}\ensuremath{\gg}1$---in obvious conflict with the large-scale isotropy of the microwave background. One remedy for this is a model in which the inflation occurs when $\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}({t}_{1})\ensuremath{\gg}{H}^{2}$. We analyze a supersymmetric model which has this feature, and show that a value of ${\frac{\ensuremath{\delta}\ensuremath{\rho}}{\ensuremath{\rho}}|}_{H}\ensuremath{\simeq}{10}^{\ensuremath{-}4}\ensuremath{-}{10}^{\ensuremath{-}3}$ on all observable scales is not implausible.
Keywords
Affiliated Institutions
Related Publications
Ensemble Dependence of Fluctuations with Application to Machine Computations
The standard theory of fluctuations in thermodynamic variables in various ensembles is generalized to nonthermodynamic variables: e.g., the mean-square fluctuations of the kinet...
First-Principles Determination of the Soft Mode in Cubic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>ZrO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A direct approach to calculate the phonon dispersion using an ab initio force constant method is introduced. The phonon dispersion and structural instability of cubic ${\mathrm{...
Domain Structure of Rochelle Salt and K<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>P<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
It has been verified by means of the polarization microscope that rochelle salt in the ferroelectric state consists of many domains. The domain structure in an annealed crystal ...
Solar models, neutrino experiments, and helioseismology
The event rates and their recognized uncertainties are calculated for eleven solar neutrino experiments using accurate solar models. The same solar models are used to evaluate t...
Wave propagation and localization in a long-range correlated random potential
We examine the effect of long-range spatially correlated disorder on the Anderson localization transition in $d=2+\ensuremath{\epsilon}$ dimensions. This is described as a phase...
Publication Info
- Year
- 1983
- Type
- article
- Volume
- 28
- Issue
- 4
- Pages
- 679-693
- Citations
- 1941
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevd.28.679