Keywords
Affiliated Institutions
Related Publications
Regularization Paths for Generalized Linear Models via Coordinate Descent
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multi- nom...
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-of-the-art performance on a variety of machine learning tasks. Several researchers have recently ...
MCMC Methods for Multi-Response Generalized Linear Mixed Models: The<b>MCMCglmm</b><i>R</i>Package
Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in clo...
Fast and accurate image upscaling with super-resolution forests
The aim of single image super-resolution is to reconstruct a high-resolution image from a single low-resolution input. Although the task is ill-posed it can be seen as finding a...
Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements
This paper proves best known guarantees for exact reconstruction of a sparse signal f from few non-adaptive universal linear measurements. We consider Fourier measurements (rand...
Publication Info
- Year
- 2002
- Type
- article
- Volume
- 38
- Issue
- 4
- Pages
- 367-378
- Citations
- 6830
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1016/s0167-9473(01)00065-2