Abstract
We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm 2 (both hemispheres), ∼70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of ∼10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.
Keywords
Affiliated Institutions
Related Publications
Medial Prefrontal Cortices Are Unified by Common Connections With Superior Temporal Cortices and Distinguished by Input From Memory-Related Areas in the Rhesus Monkey
Medial prefrontal cortices in primates have been associated with emotion, memory, and complex cognitive processes. Here we investigated whether the pattern of cortical connectio...
Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory
Alzheimer's disease (AD) and antecedent factors associated with AD were explored using amyloid imaging and unbiased measures of longitudinal atrophy in combination with reanalys...
Functional magnetic resonance imaging of complex human movements
Functional magnetic resonance imaging (FMRI) is a new, noninvasive imaging tool thought to measure changes related to regional cerebral blood flow (rCBF). Previous FMRI studies ...
Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex
1. We examined the spatiotemporal organization of ongoing activity in cat visual areas 17 and 18, in relation to the spontaneous activity of individual neurons. To search for co...
Pathological Changes in the Parahippocampal Region in Select Non‐Alzheimer's Dementias
A bstract : The transentorhinal and entorhinal regions of the human brain extend over the ambient gyrus and anterior portions of the parahippocampal gyrus. They are important co...
Publication Info
- Year
- 1997
- Type
- article
- Volume
- 17
- Issue
- 18
- Pages
- 7079-7102
- Citations
- 468
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1523/jneurosci.17-18-07079.1997