Abstract
Traditional classification approaches generalize poorly on image classification tasks, because of the high dimensionality of the feature space. This paper shows that support vector machines (SVM's) can generalize well on difficult image classification problems where the only features are high dimensional histograms. Heavy-tailed RBF kernels of the form K(x, y) = e(-rho)Sigma(i)/xia-yia/b with a < or = 1 and b < or = 2 are evaluated on the classification of images extracted from the Corel stock photo collection and shown to far outperform traditional polynomial or Gaussian radial basis function (RBF) kernels. Moreover, we observed that a simple remapping of the input x(i)-->x(i)(a) improves the performance of linear SVM's to such an extend that it makes them, for this problem, a valid alternative to RBF kernels.
Keywords
Affiliated Institutions
Related Publications
PCA-SIFT: a more distinctive representation for local image descriptors
Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid (June 2003) rec...
Sampling signals with finite rate of innovation
Consider classes of signals that have a finite number of degrees of freedom per unit of time and call this number the rate of innovation. Examples of signals with a finite rate ...
A general framework for object detection
This paper presents a general trainable framework for object detection in static images of cluttered scenes. The detection technique we develop is based on a wavelet representat...
A Global Geometric Framework for Nonlinear Dimensionality Reduction
Scientists working with large volumes of high-dimensional data, such as global climate patterns, stellar spectra, or human gene distributions, regularly confront the problem of ...
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion base...
Publication Info
- Year
- 1999
- Type
- article
- Volume
- 10
- Issue
- 5
- Pages
- 1055-1064
- Citations
- 1452
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/72.788646