The COVID-19 social media infodemic

2020 Scientific Reports 1,480 citations

Abstract

We address the diffusion of information about the COVID-19 with a massive data analysis on Twitter, Instagram, YouTube, Reddit and Gab. We analyze engagement and interest in the COVID-19 topic and provide a differential assessment on the evolution of the discourse on a global scale for each platform and their users. We fit information spreading with epidemic models characterizing the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} for each social media platform. Moreover, we identify information spreading from questionable sources, finding different volumes of misinformation in each platform. However, information from both reliable and questionable sources do not present different spreading patterns. Finally, we provide platform-dependent numerical estimates of rumors’ amplification.

MeSH Terms

Basic Reproduction NumberBetacoronavirusCOVID-19Coronavirus InfectionsData AnalysisHumansInformation DisseminationLinear ModelsNeural NetworksComputerPandemicsPneumoniaViralSARS-CoV-2Social BehaviorSocial Media

Affiliated Institutions

Related Publications

Publication Info

Year
2020
Type
article
Volume
10
Issue
1
Pages
16598-16598
Citations
1480
Access
Closed

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

1480
OpenAlex
66
Influential

Cite This

Matteo Cinelli, Walter Quattrociocchi, Alessandro Galeazzi et al. (2020). The COVID-19 social media infodemic. Scientific Reports , 10 (1) , 16598-16598. https://doi.org/10.1038/s41598-020-73510-5

Identifiers

DOI
10.1038/s41598-020-73510-5
PMID
33024152
PMCID
PMC7538912
arXiv
2003.05004

Data Quality

Data completeness: 84%