Abstract
I propose a new method for variable selection and shrinkage in Cox's proportional hazards model. My proposal minimizes the log partial likelihood subject to the sum of the absolute values of the parameters being bounded by a constant. Because of the nature of this constraint, it shrinks coefficients and produces some coefficients that are exactly zero. As a result it reduces the estimation variance while providing an interpretable final model. The method is a variation of the 'lasso' proposal of Tibshirani, designed for the linear regression context. Simulations indicate that the lasso can be more accurate than stepwise selection in this setting.
Keywords
Affiliated Institutions
Related Publications
Regression Shrinkage and Selection Via the Lasso
SUMMARY We propose a new method for estimation in linear models. The ‘lasso’ minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients b...
Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR
Summary Variable selection can be challenging, particularly in situations with a large number of predictors with possibly high correlations, such as gene expression data. In thi...
Modeled Variance in Two-Level Models
The concept of explained proportion of variance or modeled proportion of variance is reviewed in the situation of the random effects hierarchical two-level model. It is argued t...
Generalized Collinearity Diagnostics
Abstract Working in the context of the linear model y = Xβ + ε, we generalize the concept of variance inflation as a measure of collinearity to a subset of parameters in β (deno...
MCMC Methods for Multi-Response Generalized Linear Mixed Models: The<b>MCMCglmm</b><i>R</i>Package
Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in clo...
Publication Info
- Year
- 1997
- Type
- article
- Volume
- 16
- Issue
- 4
- Pages
- 385-395
- Citations
- 4150
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3