Abstract
Most popular evolutionary algorithms for multiobjective optimisation maintain a population of solutions from which individuals are selected for reproduction. In this paper, we introduce a simpler evolution scheme for multiobjective problems, called the Pareto archived evolution strategy (PAES). We argue that PAES may represent the simplest possible non-trivial algorithm capable of generating diverse solutions in the Pareto optimal set. The algorithm is identified as being a (1+1) evolution strategy, using local search from a population of one but using a reference archive of previously found solutions in order to identify the approximate dominance ranking of the current and candidate solution vectors. PAES is intended as a good baseline approach, against which more involved methods may be compared, and may also serve well in some real-world applications when local search seems superior to or competitive with population-based methods. The performance of the new algorithm is compared with that of a MOEA based on the niched Pareto GA on a real world application from the telecommunications field. In addition, we include results from experiments carried out on a suite of four test functions, to demonstrate the algorithm's general capability.
Keywords
Affiliated Institutions
Related Publications
Performance evaluation of genetic algorithms for flowshop scheduling problems
The aim of this paper is to evaluate the performance of genetic algorithms for the flowshop scheduling problem with an objective of minimizing the makespan. First we examine var...
Handbook of Genetic Algorithms
This book sets out to explain what genetic algorithms are and how they can be used to solve real-world problems. The first objective is tackled by the editor, Lawrence Davis. Th...
A modified particle swarm optimizer
Evolutionary computation techniques, genetic algorithms, evolutionary strategies and genetic programming are motivated by the evolution of nature. A population of individuals, w...
Quantifying the Sim-To-Real Gap in UAV Disturbance Rejection
Due to the safety risks and training sample inefficiency, it is often preferred to develop controllers in simulation. However, minor differences between the simulation and the r...
Confidence limits of evolutionary synthesis models
Evolutionary synthesis models are a fundamental tool to interpret the properties of observed stellar systems. In order to achieve a meaningful comparison between models and real...
Publication Info
- Year
- 2003
- Type
- article
- Pages
- 98-105
- Citations
- 1267
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/cec.1999.781913