Abstract
Abstract An important aspect of nonparametric regression by spline smoothing is the estimation of the smoothing parameter. In this article we report on an extensive simulation study that investigates the finite-sample performance of generalized cross-validation, cross-validation, and marginal likelihood estimators of the smoothing parameter in splines of orders 2 and 3. The performance criterion for both the estimate of the function and its first derivative is measured by the square root of integrated squared error. Marginal likelihood using splines of degree 5 emerges as an attractive alternative to the other estimators in that it usually outperforms them and is also faster to compute.
Keywords
Affiliated Institutions
Related Publications
Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion
Summary Many different methods have been proposed to construct nonparametric estimates of a smooth regression function, including local polynomial, (convolution) kernel and smoo...
Empirical Functionals and Efficient Smoothing Parameter Selection
SUMMARY A striking feature of curve estimation is that the smoothing parameter ĥ 0, which minimizes the squared error of a kernel or smoothing spline estimator, is very difficul...
Flexible smoothing with B-splines and penalties
B-splines are attractive for nonparametric modelling, but choosing the optimal number and positions of knots is a complex task. Equidistant knots can be used, but their small an...
Theory for penalised spline regression
Penalised spline regression is a popular new approach to smoothing, but its theoretical properties are not yet well understood. In this paper, mean squared error expressions and...
Spline Smoothing: The Equivalent Variable Kernel Method
The spline smoothing approach to nonparametric regression and curve estimation is considered. It is shown that, in a certain sense, spline smoothing corresponds approximately to...
Publication Info
- Year
- 1991
- Type
- article
- Volume
- 86
- Issue
- 416
- Pages
- 1042-1050
- Citations
- 79
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1080/01621459.1991.10475150