Keywords

Anomalous diffusionPhysicsRandom walkStatistical physicsRelaxation (psychology)DiffusionMaster equationContinuous-time random walkFokker–Planck equationFractional calculusExponential functionAdvectionClassical mechanicsMathematical analysisDifferential equationInnovation diffusionMathematicsQuantum mechanics

Affiliated Institutions

Related Publications

Fractional Kramers Equation

We introduce a fractional Kramers equation for a particle interacting with a thermal heat bath and external nonlinear force field. For the force-free case, the velocity damping ...

2000 The Journal of Physical Chemistry B 185 citations

Bloch Equations with Diffusion Terms

The phenomenological Bloch equations in nuclear magnetic resonance are generalized by the addition of terms due to the transfer of magnetization by diffusion. The revised equati...

1956 Physical Review 1164 citations

Continuous-time random-walk model of electron transport in nanocrystalline<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">TiO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>electrodes

Electronic junctions made from porous, nanocrystalline ${\mathrm{TiO}}_{2}$ films in contact with an electrolyte are important for applications such as dye-sensitized solar cell...

1999 Physical review. B, Condensed matter 622 citations

Publication Info

Year
2000
Type
article
Volume
339
Issue
1
Pages
1-77
Citations
8456
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

8456
OpenAlex

Cite This

Ralf Metzler, J. Klafter (2000). The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports , 339 (1) , 1-77. https://doi.org/10.1016/s0370-1573(00)00070-3

Identifiers

DOI
10.1016/s0370-1573(00)00070-3