Abstract
Over the last 20-30 years, the extended Kalman filter (EKF) has become the algorithm of choice in numerous nonlinear estimation and machine learning applications. These include estimating the state of a nonlinear dynamic system as well estimating parameters for nonlinear system identification (eg, learning the weights of a neural network). The EKF applies the standard linear Kalman filter methodology to a linearization of the true nonlinear system. This approach is sub-optimal, and can easily lead to divergence. Julier et al. (1997), proposed the unscented Kalman filter (UKF) as a derivative-free alternative to the extended Kalman filter in the framework of state estimation. This was extended to parameter estimation by Wan and Van der Merwe et al., (2000). The UKF consistently outperforms the EKF in terms of prediction and estimation error, at an equal computational complexity of (OL/sup 3/)/sup l/ for general state-space problems. When the EKF is applied to parameter estimation, the special form of the state-space equations allows for an O(L/sup 2/) implementation. This paper introduces the square-root unscented Kalman filter (SR-UKF) which is also O(L/sup 3/) for general state estimation and O(L/sup 2/) for parameter estimation (note the original formulation of the UKF for parameter-estimation was O(L/sup 3/)). In addition, the square-root forms have the added benefit of numerical stability and guaranteed positive semi-definiteness of the state covariances.
Keywords
Affiliated Institutions
Related Publications
Unscented Filtering and Nonlinear Estimation
The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation communi...
New extension of the Kalman filter to nonlinear systems
The Kalman Filter (KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the applicatio...
Statistically Linearized Estimation of Reentry Trajectories
Several filters are applied to the problem of state estimation from inertial measurements of reentry drag. This is a highly nonlinear problem of practical significance. It is fo...
The higher order unscented filter
This article proposes a technique for the selection of the /spl sigma/-set for a probability distribution approximation filter, i.e., the unscented filter. The /spl sigma/-set i...
A comparison of several nonlinear filters for reentry vehicle tracking
This paper compares the performance of several non-linear filters for the real-time estimation of the trajectory of a reentry vehicle from its radar observations. In particular,...
Publication Info
- Year
- 2002
- Type
- article
- Volume
- 6
- Pages
- 3461-3464
- Citations
- 1156
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/icassp.2001.940586