Abstract
Motivated by a recent experiment reporting on the possible application of graphene as sensors, we calculate transport properties of 2D graphene monolayers in the presence of adsorbed molecules. We find that the adsorbed molecules, acting as compensators that partially neutralize the random charged impurity centers in the substrate, enhance the graphene mobility without much change in the carrier density. We predict that subsequent field-effect measurements should preserve this higher mobility for both electrons and holes, but with a voltage induced electron-hole asymmetry that depends on whether the adsorbed molecule was an electron or hole donor in the compensation process. We also calculate the low density magnetoresistance and find good quantitative agreement with experimental results.
Keywords
Affiliated Institutions
Related Publications
Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics
We have produced ultrathin epitaxial graphite films which show remarkable 2D\nelectron gas (2DEG) behavior. The films, composed of typically 3 graphene\nsheets, were grown by th...
Graphene Oxidation: Thickness-Dependent Etching and Strong Chemical Doping
Patterned graphene shows substantial potential for applications in future molecular-scale integrated electronics. Environmental effects are a critical issue in a single-layer ma...
Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays
We have grown well-aligned carbon nanotube arrays by thermal chemical vapor deposition at 800 °C on Fe nanoparticles deposited by a pulsed laser on a porous Si substrate. We als...
Evidence for a spontaneous gapped state in ultraclean bilayer graphene
At the charge neutrality point, bilayer graphene (BLG) is strongly susceptible to electronic interactions and is expected to undergo a phase transition to a state with spontaneo...
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
Generalized gradient approximations (GGA’s) seek to improve upon the accuracy of the local-spin-density (LSD) approximation in electronic-structure calculations. Perdew and Wang...
Publication Info
- Year
- 2007
- Type
- article
- Volume
- 76
- Issue
- 19
- Citations
- 187
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.76.195421