Abstract

Analyzing vertebrate genomes requires rapid mRNA/DNA and cross-species protein alignments. A new tool, BLAT , is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences. BLAT's speed stems from an index of all nonoverlapping K-mers in the genome. This index fits inside the RAM of inexpensive computers, and need only be computed once for each genome assembly. BLAT has several major stages. It uses the index to find regions in the genome likely to be homologous to the query sequence. It performs an alignment between homologous regions. It stitches together these aligned regions (often exons) into larger alignments (typically genes). Finally, BLAT revisits small internal exons possibly missed at the first stage and adjusts large gap boundaries that have canonical splice sites where feasible. This paper describes how BLAT was optimized. Effects on speed and sensitivity are explored for various K-mer sizes, mismatch schemes, and number of required index matches. BLAT is compared with other alignment programs on various test sets and then used in several genome-wide applications. http://genome.ucsc.edu hosts a web-based BLAT server for the human genome.

Keywords

GenomeBiologySequence alignmentGenome browserComputational biologyHuman genomeExonGeneticsReference genomeComputer scienceGenomicsGenePeptide sequence

Affiliated Institutions

Related Publications

Publication Info

Year
2002
Type
article
Volume
12
Issue
4
Pages
656-664
Citations
8299
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

8299
OpenAlex

Cite This

W. James Kent (2002). <tt>BLAT</tt>—The <tt>BLAST</tt>-Like Alignment Tool. Genome Research , 12 (4) , 656-664. https://doi.org/10.1101/gr.229202

Identifiers

DOI
10.1101/gr.229202