Abstract
In several applications, MRI is used to monitor the time behavior of the signal in an organ of interest; e.g., signal evolution because of physiological motion, activation, or contrast-agent accumulation. Dynamic applications involve acquiring data in a k-t space, which contains both temporal and spatial information. It is shown here that in some dynamic applications, the t axis of k-t space is not densely filled with information. A method is introduced that can transfer information from the k axes to the t axis, allowing a denser, smaller k-t space to be acquired, and leading to significant reductions in the acquisition time of the temporal frames. Results are presented for cardiac-triggered imaging and functional MRI (fMRI), and are compared with data obtained in a conventional way. The temporal resolution was increased by nearly a factor of two in the cardiac-triggered study, and by as much as a factor of eight in the fMRI study. This increase allowed the acquisition of fMRI activation maps, even when the acquisition time for a single full time frame was actually longer than the paradigm cycle period itself. The new method can be used to significantly reduce the acquisition time of the individual temporal frames in certain dynamic studies. This can be used, for example, to increase the temporal or spatial resolution, increase the spatial coverage, decrease the total imaging time, or alter sequence parameters e.g., repetition time (TR) and echo time (TE) and thereby alter contrast. Magn Reson Med 42:813-828, 1999.
Keywords
Affiliated Institutions
Related Publications
Global Data for Ecology and Epidemiology: A Novel Algorithm for Temporal Fourier Processing MODIS Data
Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation...
Functional connectivity in the motor cortex of resting human brain using echo‐planar mri
Abstract An MRI time course of 512 echo‐planar images (EPI) in resting human brain obtained every 250 ms reveals fluctuations in signal intensity in each pixel that have a physi...
High-speed three-dimensional X-ray computed tomography: The dynamic spatial reconstructor
Most X-ray CT scanners require a few seconds to produce a single two-dimensional (2-D) image of a cross section of the body. The accuracy of full three-dimensional (3-D) images ...
The Capacity of Linear Channels with Additive Gaussian Noise
The standard method of computing the mutual information between two stochastic processes with finite energy replaces the processes with their Fourier coefficients. This procedur...
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f ∈ C N and a randomly chosen set of freque...
Publication Info
- Year
- 1999
- Type
- article
- Volume
- 42
- Issue
- 5
- Pages
- 813-828
- Citations
- 419
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1002/(sici)1522-2594(199911)42:5<813::aid-mrm1>3.0.co;2-s