Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation

1963 Translations - American Mathematical Society/Translations 171 citations

Keywords

UniquenessMathematicsStability (learning theory)Cauchy distributionInitial value problemApplied mathematicsMathematical analysisCauchy problemPure mathematicsComputer science

Related Publications

Scattered Data Approximation

Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into ...

2004 Cambridge University Press eBooks 2534 citations

The Theory of Matrices

Volume 2: XI. Complex symmetric, skew-symmetric, and orthogonal matrices: 1. Some formulas for complex orthogonal and unitary matrices 2. Polar decomposition of a complex matrix...

1984 8577 citations

The algebraic eigenvalue problem

Theoretical background Perturbation theory Error analysis Solution of linear algebraic equations Hermitian matrices Reduction of a general matrix to condensed form Eigenvalues o...

1965 5784 citations

Publication Info

Year
1963
Type
other
Pages
285-290
Citations
171
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

171
OpenAlex
60
CrossRef

Cite This

O. A. Oleĭnik (1963). Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Translations - American Mathematical Society/Translations , 285-290. https://doi.org/10.1090/trans2/033/09

Identifiers

DOI
10.1090/trans2/033/09

Data Quality

Data completeness: 63%