Abstract
Robust object recognition is a crucial skill for robots operating autonomously in real world environments. Range sensors such as LiDAR and RGBD cameras are increasingly found in modern robotic systems, providing a rich source of 3D information that can aid in this task. However, many current systems do not fully utilize this information and have trouble efficiently dealing with large amounts of point cloud data. In this paper, we propose VoxNet, an architecture to tackle this problem by integrating a volumetric Occupancy Grid representation with a supervised 3D Convolutional Neural Network (3D CNN). We evaluate our approach on publicly available benchmarks using LiDAR, RGBD, and CAD data. VoxNet achieves accuracy beyond the state of the art while labeling hundreds of instances per second.
Keywords
Affiliated Institutions
Related Publications
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
Accurate detection of objects in 3D point clouds is a central problem in many applications, such as autonomous navigation, housekeeping robots, and augmented/virtual reality. To...
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN), for accurate 3D object detection from point clouds. Our proposed method d...
SECOND: Sparsely Embedded Convolutional Detection
LiDAR-based or RGB-D-based object detection is used in numerous applications, ranging from autonomous driving to robot vision. Voxel-based 3D convolutional networks have been us...
YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection
Object detection in 3D with stereo cameras is an important problem in computer vision, and is particularly crucial in low-cost autonomous mobile robots without LiDARs. Nowadays,...
Voting for Voting in Online Point Cloud Object Detection
This paper proposes an efficient and effective scheme to applying the sliding window approach popular in computer vision to 3D data.Specifically, the sparse nature of the proble...
Publication Info
- Year
- 2015
- Type
- article
- Pages
- 922-928
- Citations
- 3459
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/iros.2015.7353481