Abstract
Seismic velocities measured by wide-angle surveys are commonly used to constrain material composition in the deep crust. Therefore, it is important to understand how these velocities are affected by the presence of multiscale heterogeneities. The effects may be characterised by the scale of the heterogeneity relative to the dominant seismic wavelength (λ); what is clear is that heterogeneities of all scales and strengths bias wide-angle velocities to some degree. Waveform modelling was used to investigate the apparent wide-angle P-wave velocities of different heterogeneous lower crusts. A constant composition (50 per cent felsic and 50 per cent ultramafic) was formed into a variety of 1- and 2-D heterogeneous arrangements and the resulting wide-angle seismic velocity was estimated. Elastic, 1-D models produced the largest velocity shift relative to the true average velocity of the medium (which is the velocity of an isotropic mixture of the two components). Thick (width » λ) horizontal layers, as a result of Fermat's Principle, provided the largest increase in velocity; thin (width «λ) vertical layers produced the largest decrease in velocity. Acoustic 2-D algorithms were shown to be inadequate for modelling the kinematics of waves in bodies with multiscale heterogeneities. Elastic, 2-D modelling found velocity shifts (both positive and negative) that were of a smaller magnitude than those produced by 1-D models. The key to the magnitude of the velocity shift appears to be the connectivity of the fast (and/or slow) components. Thus, the models with the highest apparent levels of connectivity between the fast phases, the 1-D layers, produced the highest-magnitude velocity shifts. To understand the relationship between measured seismic velocities and petrology in the deep crust it is clear that high-resolution structural information (which describes such connectivity) must be included in any modelling.
Keywords
Affiliated Institutions
Related Publications
Residual dispersion measurement—a new method of surface-wave analysis
Abstract Measurements of group velocities by means of band-pass filtering lead to systematic errors when group in velocity changes rapidly with frequency. A new method hereafter...
Relationship between seismic P‐wave velocity and the composition of anhydrous igneous and meta‐igneous rocks
This study presents a new approach to quantitatively assess the relationship between the composition and seismic P‐wave velocity of anhydrous igneous and meta‐igneous rocks. We ...
On Regional Differences in Dispersion of Mantle Rayleigh Waves
Rayleigh waves generated by the Peru—Bolivian border earthquake of 1963 August 15 have been analysed at 35 WWSSN stations in the period range between 150 and 300 seconds. Thirty...
Importance of physical dispersion in surface wave and free oscillation problems: Review
Physical dispersion resulting from anelasticity is investigated from the point of view of linear viscoelastic models and causality relations. It is concluded that inasmuch as Q ...
The Early Structural Evolution and Anisotropy of the Oceanic Upper Mantle
The dispersion of Love and Rayleigh waves in the period range 17–167 s is used to detect the change in the structure of the upper mantle as the age of the sea-floor increases aw...
Publication Info
- Year
- 1997
- Type
- article
- Volume
- 129
- Issue
- 2
- Pages
- 269-280
- Citations
- 20
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1111/j.1365-246x.1997.tb01580.x