Abstract

When the Fermi level is pinned in the energy gap between two Landau levels of two-dimensional electrons, the response of electrons in the completely filled levels to an electric field is a dissipation-free Hall current perpendicular to the field. Our low-temperature measurements on GaAs-${\mathrm{Al}}_{x}{\mathrm{Ga}}_{1\ensuremath{-}x}\mathrm{As}$ heterojunctions give an upper limit for the resistance along the current path of ${\ensuremath{\rho}}_{\mathrm{xx}}\ensuremath{\lesssim}5\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}7}$ \ensuremath{\Omega}/\ensuremath{\square} which corresponds to a three-dimensional resistivity of $\ensuremath{\rho}<~5\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}13}$ \ensuremath{\Omega} cm. This resistivity is more than one order of magnitude lower than the resistivity of any nonsuperconducting material.

Keywords

Condensed matter physicsPhysicsElectrical resistivity and conductivityOmegaElectronLandau quantizationMagnetic fieldOrder (exchange)Mean free pathElectric fieldEnergy (signal processing)Quantum mechanics

Related Publications

First-Principles Determination of the Soft Mode in Cubic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>ZrO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

A direct approach to calculate the phonon dispersion using an ab initio force constant method is introduced. The phonon dispersion and structural instability of cubic ${\mathrm{...

1997 Physical Review Letters 2708 citations

Publication Info

Year
1982
Type
article
Volume
25
Issue
2
Pages
1405-1407
Citations
129
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

129
OpenAlex

Cite This

D. C. Tsui, H. L. Störmer, A. C. Gossard (1982). Zero-resistance state of two-dimensional electrons in a quantizing magnetic field. Physical review. B, Condensed matter , 25 (2) , 1405-1407. https://doi.org/10.1103/physrevb.25.1405

Identifiers

DOI
10.1103/physrevb.25.1405