Abstract
The problem of determining which activated (and slow) transitions can occur from a given initial state at a finite temperature is addressed. In the harmonic approximation to transition state theory this problem reduces to finding the set of low lying saddle points at the boundary of the potential energy basin associated with the initial state, as well as the relevant vibrational frequencies. Also, when full transition state theory calculations are carried out, it can be useful to know the location of the saddle points on the potential energy surface. A method for finding saddle points without knowledge of the final state of the transition is described. The method only makes use of first derivatives of the potential energy and is, therefore, applicable in situations where second derivatives are too costly or too tedious to evaluate, for example, in plane wave based density functional theory calculations. It is also designed to scale efficiently with the dimensionality of the system and can be applied to very large systems when empirical or semiempirical methods are used to obtain the atomic forces. The method can be started from the potential minimum representing the initial state, or from an initial guess closer to the saddle point. An application to Al adatom diffusion on an Al(100) surface described by an embedded atom method potential is presented. A large number of saddle points were found for adatom diffusion and dimer/vacancy formation. A surprisingly low energy four atom exchange process was found as well as processes indicative of local hex reconstruction of the surface layer.
Keywords
Affiliated Institutions
Related Publications
Relativistic effects in <i>a</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potential studies of heavy metal compounds. Application to HgCl2, AuCl, and PtH
A method is described for obtaining l-dependent relativistic effective core potentials (ECPs) from Dirac–Fock self-consistent field atomic wave functions. These potentials are d...
Energy and energy derivatives for molecular solutes: Perspectives of application to hybrid quantum and molecular methods
We examine the state of the art of the solvation procedure called the polarizable continuum model (PCM), focusing our attention on the basic properties: energy of the solute, so...
<i>Ab initio</i>up to the melting point: Anharmonicity and vacancies in aluminum
We propose a fully ab initio based integrated approach to determine the volume and temperature dependent free-energy surface of nonmagnetic crystalline solids up to the melting ...
Chemisorption bonding, site preference, and chain formation at the K/Si(001)<i>2×1</i>interface
A variety of possible chemisorption models has been investigated for the K/Si(001)2×1 interface by use of the local-density formalism and the discrete variational method to carr...
Towards phase transferable potential functions: Methodology and application to nitrogen
We describe a generalizable approach to the development of phase transferable effective intermolecular potentials and apply the method to the study of N2. The method is based on...
Publication Info
- Year
- 1999
- Type
- article
- Volume
- 111
- Issue
- 15
- Pages
- 7010-7022
- Citations
- 3214
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.480097