Abstract
This paper establishes an almost sure limit for the operator norm of rectangular random matrices: Suppose $\\{v_{ij}\\}i = 1,2, \\cdots, j = 1,2, \\cdots$ are zero mean i.i.d. random variables satisfying the moment condition $E|\\nu_{11}|^n \\leqslant n^{\\alpha n}$ for all $n \\geqslant 2$, and some $\\alpha$. Let $\\sigma^2 = Ev^2_{11}$ and let $V_{pn}$ be the $p \\times n$ matrix $\\{v_{ij}\\}_{1\\leqslant i\\leqslant p; 1\\leqslant j\\leqslant n}$. If $p_n$ is a sequence of integers such that $p_n/n \\rightarrow y$ as $n \\rightarrow \\infty$, for some $0 < y < \\infty$, then $1/n|V_{p_nn}V^T_{p_nn}| \\rightarrow (1 + y^{\\frac{1}{2}})^2\\sigma^2$ almost surely, where $|A|$ denotes the operator ("induced") norm of $A$. Since $1/n|V_{p_nn}V^T_{p_nn}|$ is the maximum eigenvalue of $1/nV_{p_nn}V^T_{p_nn}$, the result relates to studies on the spectrum of symmetric random matrices.
Keywords
Related Publications
Estimation in a Multivariate "Errors in Variables" Regression Model: Large Sample Results
In a multivariate "errors in variables" regression model, the unknown mean vectors $\\mathbf{u}_{1i}: p \\times 1, \\mathbf{u}_{2i}: r \\times 1$ of the vector observations $\\m...
The Smallest Eigenvalue of a Large Dimensional Wishart Matrix
For positive integers $s, n$ let $M_s = (1/s)V_sV^T_s$, where $V_s$ is an $n \\times s$ matrix composed of i.i.d. $N(0, 1)$ random variables. Assume $n = n(s)$ and $n/s \\righta...
Limit of the Smallest Eigenvalue of a Large Dimensional Sample Covariance Matrix
In this paper, the authors show that the smallest (if $p \\leq n$) or the $(p - n + 1)$-th smallest (if $p > n$) eigenvalue of a sample covariance matrix of the form $(1/n)XX...
Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters of a Linear Process
Let $\\{x_t\\}$ be a linear stationary process of the form $x_t + \\Sigma_{1\\leqslant i<\\infty}a_ix_{t-i} = e_t$, where $\\{e_t\\}$ is a sequence of i.i.d. normal random va...
Laws of Large Numbers for Sums of Extreme Values
Let $X_1, X_2, \\cdots$, be a sequence of nonnegative i.i.d. random variables with common distribution $F$, and for each $n \\geq 1$ let $X_{1n} \\leq \\cdots \\leq X_{nn}$ deno...
Publication Info
- Year
- 1980
- Type
- article
- Volume
- 8
- Issue
- 2
- Citations
- 441
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1214/aop/1176994775