A Limit Theorem for the Norm of Random Matrices

1980 The Annals of Probability 441 citations

Abstract

This paper establishes an almost sure limit for the operator norm of rectangular random matrices: Suppose $\\{v_{ij}\\}i = 1,2, \\cdots, j = 1,2, \\cdots$ are zero mean i.i.d. random variables satisfying the moment condition $E|\\nu_{11}|^n \\leqslant n^{\\alpha n}$ for all $n \\geqslant 2$, and some $\\alpha$. Let $\\sigma^2 = Ev^2_{11}$ and let $V_{pn}$ be the $p \\times n$ matrix $\\{v_{ij}\\}_{1\\leqslant i\\leqslant p; 1\\leqslant j\\leqslant n}$. If $p_n$ is a sequence of integers such that $p_n/n \\rightarrow y$ as $n \\rightarrow \\infty$, for some $0 < y < \\infty$, then $1/n|V_{p_nn}V^T_{p_nn}| \\rightarrow (1 + y^{\\frac{1}{2}})^2\\sigma^2$ almost surely, where $|A|$ denotes the operator ("induced") norm of $A$. Since $1/n|V_{p_nn}V^T_{p_nn}|$ is the maximum eigenvalue of $1/nV_{p_nn}V^T_{p_nn}$, the result relates to studies on the spectrum of symmetric random matrices.

Keywords

MathematicsCombinatoricsRandom matrixRandom variableEigenvalues and eigenvectorsZero (linguistics)Norm (philosophy)Matrix normOperator (biology)PhysicsStatisticsQuantum mechanics

Related Publications

Publication Info

Year
1980
Type
article
Volume
8
Issue
2
Citations
441
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

441
OpenAlex

Cite This

Stuart Geman (1980). A Limit Theorem for the Norm of Random Matrices. The Annals of Probability , 8 (2) . https://doi.org/10.1214/aop/1176994775

Identifiers

DOI
10.1214/aop/1176994775