Abstract

For positive integers $s, n$ let $M_s = (1/s)V_sV^T_s$, where $V_s$ is an $n \\times s$ matrix composed of i.i.d. $N(0, 1)$ random variables. Assume $n = n(s)$ and $n/s \\rightarrow y \\in (0, 1)$ as $s \\rightarrow \\infty$. Then it is shown that the smallest eigenvalue of $M_s$ converges almost surely to $(1 - \\sqrt y)^2$ as $s \\rightarrow \\infty$.

Keywords

MathematicsWishart distributionEigenvalues and eigenvectorsCombinatoricsRandom matrixMatrix (chemical analysis)StatisticsMultivariate statisticsPhysics

Related Publications

Publication Info

Year
1985
Type
article
Volume
13
Issue
4
Citations
254
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

254
OpenAlex

Cite This

Jack W. Silverstein (1985). The Smallest Eigenvalue of a Large Dimensional Wishart Matrix. The Annals of Probability , 13 (4) . https://doi.org/10.1214/aop/1176992819

Identifiers

DOI
10.1214/aop/1176992819