Abstract

Preface Part I. Regression Smoothing: 1. Introduction 2. Basic idea of smoothing 3. Smoothing techniques Part II. The Kernel Method: 4. How close is the smooth to the true curve? 5. Choosing the smoothing parameter 6. Data sets with outliers 7. Smoothing with correlated data 8. Looking for special features (qualitative smoothing) 9. Incorporating parametric components and alternatives Part III. Smoothing in High Dimensions: 10. Investigating multiple regression by additive models Appendices References List of symbols and notation.

Keywords

Nonparametric regressionNonparametric statisticsRegressionStatisticsRegression analysisMathematicsEconometricsComputer science

Affiliated Institutions

Related Publications

Publication Info

Year
1991
Type
article
Volume
29
Issue
01
Pages
29-0364
Citations
2612
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

2612
OpenAlex

Cite This

Wolfgang Karl Härdle (1991). Applied nonparametric regression. Choice Reviews Online , 29 (01) , 29-0364. https://doi.org/10.5860/choice.29-0364

Identifiers

DOI
10.5860/choice.29-0364