Abstract

Gersho's bounds on the asymptotic (large rate or small distortion) performance of block quantizers are valid for vector distortion measures that are powers of the Euclidean or <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">l_{2}</tex> norm. These results are generalized to difference distortion measures that are increasing functions of the seminorm of their argument, where any seminorm is allowed. This provides a <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</tex> -dimensional generalization of Gish and Pierce's results for single-symbol quantizers. When the distortion measore is a power of a seminorm the bounds are shown to be strictly better than the corresponding bounds provided by the <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</tex> th-order rate-distortion functions.

Keywords

Distortion (music)MathematicsRate distortionGeneralizationNorm (philosophy)AlgorithmDiscrete mathematicsComputer scienceStatisticsCoding (social sciences)Mathematical analysisTelecommunicationsBandwidth (computing)

Affiliated Institutions

Related Publications

Asymptotically optimal block quantization

In 1948 W. R. Bennett used a companding model for nonuniform quantization and proposed the formula <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3...

1979 IEEE Transactions on Information Theory 868 citations

Publication Info

Year
1980
Type
article
Volume
26
Issue
1
Pages
6-14
Citations
152
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

152
OpenAlex

Cite This

Y. Yamada, Saburo Tazaki, Robert M. Gray (1980). Asymptotic performance of block quantizers with difference distortion measures. IEEE Transactions on Information Theory , 26 (1) , 6-14. https://doi.org/10.1109/tit.1980.1056142

Identifiers

DOI
10.1109/tit.1980.1056142