Abstract

We describe an approach to manipulate and measure mechanical interactions between cells and their underlying substrates by using microfabricated arrays of elastomeric, microneedle-like posts. By controlling the geometry of the posts, we varied the compliance of the substrate while holding other surface properties constant. Cells attached to, spread across, and deflected multiple posts. The deflections of the posts occurred independently of neighboring posts and, therefore, directly reported the subcellular distribution of traction forces. We report two classes of force-supporting adhesions that exhibit distinct force–size relationships. Force increased with size of adhesions for adhesions larger than 1 μm 2 , whereas no such correlation existed for smaller adhesions. By controlling cell adhesion on these micromechanical sensors, we showed that cell morphology regulates the magnitude of traction force generated by cells. Cells that were prevented from spreading and flattening against the substrate did not contract in response to stimulation by serum or lysophosphatidic acid, whereas spread cells did. Contractility in the unspread cells was rescued by expression of constitutively active RhoA. Together, these findings demonstrate a coordination of biochemical and mechanical signals to regulate cell adhesion and mechanics, and they introduce the use of arrays of mechanically isolated sensors to manipulate and measure the mechanical interactions of cells.

Keywords

Tractive forceAdhesionTraction (geology)MechanotransductionBiophysicsMaterials scienceContractilityCell mechanicsCell adhesionMesoscopic physicsNanotechnologyAtomic force microscopyElastomerLoad cellCellChemistryCell biologyComposite materialCytoskeletonBiologyMechanical engineeringPhysicsBiochemistry

Affiliated Institutions

Related Publications

Publication Info

Year
2003
Type
article
Volume
100
Issue
4
Pages
1484-1489
Citations
1949
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1949
OpenAlex

Cite This

John L. Tan, Joe Tien, Dana M. Pirone et al. (2003). Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proceedings of the National Academy of Sciences , 100 (4) , 1484-1489. https://doi.org/10.1073/pnas.0235407100

Identifiers

DOI
10.1073/pnas.0235407100