Abstract
Whole-genome duplication produces massive duplicated blocks in plant genomes. Sharing appreciable sequence similarity, duplicated blocks may have been affected by illegitimate recombination. However, large-scale evaluation of illegitimate recombination in plant genomes has not been possible previously. Here, based on comparative and phylogenetic analysis of the sequenced genomes of rice and sorghum, we report evidence of extensive and long-lasting recombination between duplicated blocks. We estimated that at least 5.5% and 4.1% of rice and sorghum duplicated genes have been affected by nonreciprocal recombination (gene conversion) over nearly their full length after rice–sorghum divergence, while even more (8.7% and 8.1%, respectively) have been converted over portions of their length. We found that conversion occurs in higher frequency toward the terminal regions of chromosomes, and expression patterns of converted genes are more positively correlated than nonconverted ones. Though converted paralogs are more similar to one another than nonconverted ones, elevated nucleotide differences between rice–sorghum orthologs indicates that they have evolved at a faster rate, implying that recombination acts as an accelerating, rather than a conservative, element. The converted genes show no change in selection pressure. We also found no evidence that conversion contributed to guanine-cytosine (GC) content elevation.
Keywords
Affiliated Institutions
Related Publications
Colored de Bruijn Graphs and the Genome Halving Problem
Breakpoint graph analysis is a key algorithmic technique in studies of genome rearrangements. However, breakpoint graphs are defined only for genomes without duplicated genes, t...
Complete Sequence of the Mitochondrial DNA of the Red Alga <i>Porphyra purpurea</i>: Cyanobacterial Introns and Shared Ancestry of Red and Green Algae
The mitochondrial DNA (mtDNA) of Porphyra purpurea, a circular-mapping genome of 36,753 bp, has been completely sequenced. A total of 57 densely packed genes has been identified...
Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes
A central challenge in interpreting personal genomes is determining which mutations most likely influence disease. Although progress has been made in scoring the functional impa...
The Sequence of the Human Genome
A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp ...
Complete Chemical Synthesis, Assembly, and Cloning of a <i>Mycoplasma genitalium</i> Genome
We have synthesized a 582,970–base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 ...
Publication Info
- Year
- 2009
- Type
- article
- Volume
- 19
- Issue
- 6
- Pages
- 1026-1032
- Citations
- 132
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1101/gr.087288.108