Abstract
If $N$ classical particles in two dimensions interacting through a pair potential $\ensuremath{\Phi}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})$ are in equilibrium in a parallelogram box, it is proved that every $\stackrel{\ensuremath{\rightarrow}}{\mathrm{k}}\ensuremath{\ne}0$ Fourier component of the density must vanish in the thermodynamic limit, provided that $\ensuremath{\Phi}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})\ensuremath{-}\ensuremath{\lambda}{r}^{2}|{\ensuremath{\nabla}}^{2}\ensuremath{\Phi}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})|$ is integrable at $r=\ensuremath{\infty}$ and positive and nonintegrable at $r=0$, both for $\ensuremath{\lambda}=0$ and for some positive $\ensuremath{\lambda}$. This result excludes conventional crystalline long-range order in two dimensions for power-law potentials of the Lennard-Jones type, but is inconclusive for hard-core potentials. The corresponding analysis for the quantum case is outlined. Similar results hold in one dimension.
Keywords
Affiliated Institutions
Related Publications
Localization and absorption of waves in a weakly dissipative disordered medium
The effect of a small imaginary part ${\ensuremath{\epsilon}}_{2}$ to the dielectric constant on the propagation of waves in a disordered medium near the Anderson localization t...
Wave propagation and localization in a long-range correlated random potential
We examine the effect of long-range spatially correlated disorder on the Anderson localization transition in $d=2+\ensuremath{\epsilon}$ dimensions. This is described as a phase...
Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions
Arguments are presented that the $T=0$ conductance $G$ of a disordered electronic system depends on its length scale $L$ in a universal manner. Asymptotic forms are obtained for...
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Theory of Boundary Effects of Superconductors
An extension of the phenomenological London equations to take into account a space variation of the concentration of superconducting electrons is presented. The theory differs f...
Publication Info
- Year
- 1968
- Type
- article
- Volume
- 176
- Issue
- 1
- Pages
- 250-254
- Citations
- 1286
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrev.176.250