Abstract

If $N$ classical particles in two dimensions interacting through a pair potential $\ensuremath{\Phi}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})$ are in equilibrium in a parallelogram box, it is proved that every $\stackrel{\ensuremath{\rightarrow}}{\mathrm{k}}\ensuremath{\ne}0$ Fourier component of the density must vanish in the thermodynamic limit, provided that $\ensuremath{\Phi}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})\ensuremath{-}\ensuremath{\lambda}{r}^{2}|{\ensuremath{\nabla}}^{2}\ensuremath{\Phi}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})|$ is integrable at $r=\ensuremath{\infty}$ and positive and nonintegrable at $r=0$, both for $\ensuremath{\lambda}=0$ and for some positive $\ensuremath{\lambda}$. This result excludes conventional crystalline long-range order in two dimensions for power-law potentials of the Lennard-Jones type, but is inconclusive for hard-core potentials. The corresponding analysis for the quantum case is outlined. Similar results hold in one dimension.

Keywords

PhysicsOrder (exchange)Dimension (graph theory)LambdaNabla symbolMathematical physicsQuantum mechanicsCondensed matter physicsCombinatoricsMathematics

Affiliated Institutions

Related Publications

Publication Info

Year
1968
Type
article
Volume
176
Issue
1
Pages
250-254
Citations
1286
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

1286
OpenAlex

Cite This

N. David Mermin (1968). Crystalline Order in Two Dimensions. Physical Review , 176 (1) , 250-254. https://doi.org/10.1103/physrev.176.250

Identifiers

DOI
10.1103/physrev.176.250