Error bounds for convolutional codes and an asymptotically optimum decoding algorithm

1967 IEEE Transactions on Information Theory 6,666 citations

Abstract

The probability of error in decoding an optimal convolutional code transmitted over a memoryless channel is bounded from above and below as a function of the constraint length of the code. For all but pathological channels the bounds are asymptotically (exponentially) tight for rates above <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">R_{0}</tex> , the computational cutoff rate of sequential decoding. As a function of constraint length the performance of optimal convolutional codes is shown to be superior to that of block codes of the same length, the relative improvement increasing with rate. The upper bound is obtained for a specific probabilistic nonsequential decoding algorithm which is shown to be asymptotically optimum for rates above <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">R_{0}</tex> and whose performance bears certain similarities to that of sequential decoding algorithms.

Keywords

Decoding methodsAlgorithmList decodingConvolutional codeSequential decodingMathematicsUpper and lower boundsBounded functionDiscrete mathematicsConstraint (computer-aided design)Code (set theory)Asymptotically optimal algorithmProbabilistic logicFunction (biology)Berlekamp–Welch algorithmBlock codeComputer scienceConcatenated error correction codeStatistics

Affiliated Institutions

Related Publications

Low-density parity-check codes

A low-density parity-check code is a code specified by a parity-check matrix with the following properties: each column contains a small fixed number <tex xmlns:mml="http://www....

1962 IEEE Transactions on Information Theory 10397 citations

Maximum distanceq-nary codes

A <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</tex> -nary error-correcting code with <tex xmlns:mml="http://www.w3.org/1998/...

1964 IEEE Transactions on Information Theory 508 citations

Asymptotically optimal block quantization

In 1948 W. R. Bennett used a companding model for nonuniform quantization and proposed the formula <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3...

1979 IEEE Transactions on Information Theory 868 citations

Publication Info

Year
1967
Type
article
Volume
13
Issue
2
Pages
260-269
Citations
6666
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

6666
OpenAlex

Cite This

Andrew J. Viterbi (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory , 13 (2) , 260-269. https://doi.org/10.1109/tit.1967.1054010

Identifiers

DOI
10.1109/tit.1967.1054010