Abstract
In the standard interpretation of spin-density functional theory, a self-consistent Kohn-Sham calculation within the local spin density (LSD) or generalized gradient approximation (GGA) leads to a prediction of the total energy E, total electron density n(r)=${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$(r)+${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$(r), and spin magnetization density m(r)=${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$(r)-${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$(r). This interpretation encounters a serious ``symmetry dilemma'' for ${\mathrm{H}}_{2}$, ${\mathrm{Cr}}_{2}$, and many other molecules. Without changing LSD or GGA calculational methods and results, we escape this dilemma through an alternative interpretation in which the third physical prediction is not m(r) but the on-top electron pair density P(r,r), a quantity more directly related to the total energy in the absence of an external magnetic field. This alternative interpretation is also relevant to antiferromagnetic solids. We argue that the nonlocal exchange-correlation energy functional, which must be approximated, is most nearly local in the alternative spin-density functional theory presented here, less so in the standard theory, and far less so in total-density functional theory. Thus, in LSD or GGA, predictions of spin magnetization densities and moments are not so robust as predictions of total density and energy. The alternative theory helps to explain the surprising accuracy of LSD and GGA energies, and suggests that the correct solution of the Kohn-Sham equations in LSD or GGA is the fully self-consistent broken-symmetry single determinant of lowest total energy.
Keywords
Affiliated Institutions
Related Publications
Generalized gradient approximation for the exchange-correlation hole of a many-electron system
We construct a generalized gradient approximation (GGA) for the density ${\mathit{n}}_{\mathrm{xc}}$(r,r+u) at position r+u of the exchange-correlation hole surrounding an elect...
Spin scaling of the electron-gas correlation energy in the high-density limit
The ground-state correlation energy per particle in a uniform electron gas with spin densities ${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$ and ${\mathit{n}}_{\mathrm{\ensure...
Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling
For a uniform electron gas of density n=${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$+${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$=3/4\ensuremath{\pi}${\mathit{r}}_{\math...
Generalized Kohn-Sham theory for electronic excitations in realistic systems
Instead of expressing the total energy of an interacting electron system as a functional of the one-particle density as in the Hohenberg-Kohn-Sham theory, we use a conventional ...
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Publication Info
- Year
- 1995
- Type
- article
- Volume
- 51
- Issue
- 6
- Pages
- 4531-4541
- Citations
- 364
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physreva.51.4531