Abstract
The ground-state correlation energy per particle in a uniform electron gas with spin densities ${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$ and ${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$ may be expressed as ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$(\ensuremath{\zeta},${\mathit{r}}_{\mathit{s}}$)=I(\ensuremath{\zeta},${\mathit{r}}_{\mathit{s}}$)${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$(0,${\mathit{r}}_{\mathit{s}}$), where ${\mathit{r}}_{\mathit{s}}$=[3/4\ensuremath{\pi}(${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$+${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$)${]}^{1/3}$ is the density parameter and \ensuremath{\zeta}=(${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$-${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$)/(${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$+${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$) is the relative spin polarization. We find an analytic expression for the spin-scaling factor (SSF) I(\ensuremath{\zeta},${\mathit{r}}_{\mathit{s}}$) in the high-density limit ${\mathit{r}}_{\mathit{s}}$\ensuremath{\rightarrow}0. It decreases from the value 1 at \ensuremath{\zeta}=0, approaching the value 1/2 with slope -\ensuremath{\infty} as \ensuremath{\zeta} approaches 1. A simple approximation to this SSF which displays the correct qualitative behavior is ${\mathit{g}}^{3}$(\ensuremath{\zeta}), where g(\ensuremath{\zeta})=[(1+\ensuremath{\zeta}${)}^{2/3}$+(1-\ensuremath{\zeta}${)}^{2/3}$]/2. We find that g(\ensuremath{\zeta}) is the SSF for the coefficient of the \ensuremath{\Vert}\ensuremath{\nabla}n${\mathrm{\ensuremath{\Vert}}}^{2}$/${\mathit{n}}^{4/3}$ term of the spin-density gradient expansion of the exchange energy, and a good approximation to the SSF for that of correlation: ${\mathit{scrC}}_{\mathit{x}}$(\ensuremath{\zeta})/${\mathit{scrC}}_{\mathit{x}}$(0)=g(\ensuremath{\zeta}) and ${\mathit{scrC}}_{\mathit{c}}$(\ensuremath{\zeta},${\mathit{r}}_{\mathit{s}}$\ensuremath{\rightarrow}0)/${\mathit{scrC}}_{\mathit{c}}$(0, ${\mathrm{r}}_{\mathrm{s}}$\ensuremath{\rightarrow}0)\ensuremath{\approxeq}g(\ensuremath{\zeta}). We also find that the \ensuremath{\Vert}\ensuremath{\nabla}\ensuremath{\zeta}${\mathrm{\ensuremath{\Vert}}}^{2}$ contribution to the correlation energy is always negligible.
Keywords
Affiliated Institutions
Related Publications
Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling
For a uniform electron gas of density n=${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$+${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$=3/4\ensuremath{\pi}${\mathit{r}}_{\math...
Accurate and simple analytic representation of the electron-gas correlation energy
We propose a simple analytic representation of the correlation energy ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$ for a uniform electron gas, as a function of density par...
Generalized gradient approximation for the exchange-correlation hole of a many-electron system
We construct a generalized gradient approximation (GGA) for the density ${\mathit{n}}_{\mathrm{xc}}$(r,r+u) at position r+u of the exchange-correlation hole surrounding an elect...
Pair-distribution function and its coupling-constant average for the spin-polarized electron gas
The pair-distribution function g describes physical correlations between electrons, while its average g\ifmmode\bar\else\textasciimacron\fi{} over coupling constant generates th...
Escaping the symmetry dilemma through a pair-density interpretation of spin-density functional theory
In the standard interpretation of spin-density functional theory, a self-consistent Kohn-Sham calculation within the local spin density (LSD) or generalized gradient approximati...
Publication Info
- Year
- 1991
- Type
- article
- Volume
- 43
- Issue
- 11
- Pages
- 8911-8916
- Citations
- 344
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.43.8911