Abstract

The ground-state correlation energy per particle in a uniform electron gas with spin densities ${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$ and ${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$ may be expressed as ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$(\ensuremath{\zeta},${\mathit{r}}_{\mathit{s}}$)=I(\ensuremath{\zeta},${\mathit{r}}_{\mathit{s}}$)${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$(0,${\mathit{r}}_{\mathit{s}}$), where ${\mathit{r}}_{\mathit{s}}$=[3/4\ensuremath{\pi}(${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$+${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$)${]}^{1/3}$ is the density parameter and \ensuremath{\zeta}=(${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$-${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$)/(${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$+${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$) is the relative spin polarization. We find an analytic expression for the spin-scaling factor (SSF) I(\ensuremath{\zeta},${\mathit{r}}_{\mathit{s}}$) in the high-density limit ${\mathit{r}}_{\mathit{s}}$\ensuremath{\rightarrow}0. It decreases from the value 1 at \ensuremath{\zeta}=0, approaching the value 1/2 with slope -\ensuremath{\infty} as \ensuremath{\zeta} approaches 1. A simple approximation to this SSF which displays the correct qualitative behavior is ${\mathit{g}}^{3}$(\ensuremath{\zeta}), where g(\ensuremath{\zeta})=[(1+\ensuremath{\zeta}${)}^{2/3}$+(1-\ensuremath{\zeta}${)}^{2/3}$]/2. We find that g(\ensuremath{\zeta}) is the SSF for the coefficient of the \ensuremath{\Vert}\ensuremath{\nabla}n${\mathrm{\ensuremath{\Vert}}}^{2}$/${\mathit{n}}^{4/3}$ term of the spin-density gradient expansion of the exchange energy, and a good approximation to the SSF for that of correlation: ${\mathit{scrC}}_{\mathit{x}}$(\ensuremath{\zeta})/${\mathit{scrC}}_{\mathit{x}}$(0)=g(\ensuremath{\zeta}) and ${\mathit{scrC}}_{\mathit{c}}$(\ensuremath{\zeta},${\mathit{r}}_{\mathit{s}}$\ensuremath{\rightarrow}0)/${\mathit{scrC}}_{\mathit{c}}$(0, ${\mathrm{r}}_{\mathrm{s}}$\ensuremath{\rightarrow}0)\ensuremath{\approxeq}g(\ensuremath{\zeta}). We also find that the \ensuremath{\Vert}\ensuremath{\nabla}\ensuremath{\zeta}${\mathrm{\ensuremath{\Vert}}}^{2}$ contribution to the correlation energy is always negligible.

Keywords

PhysicsEnergy (signal processing)Mathematical physicsCondensed matter physicsQuantum mechanics

Affiliated Institutions

Related Publications

Publication Info

Year
1991
Type
article
Volume
43
Issue
11
Pages
8911-8916
Citations
344
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

344
OpenAlex

Cite This

Yue Wang, John P. Perdew (1991). Spin scaling of the electron-gas correlation energy in the high-density limit. Physical review. B, Condensed matter , 43 (11) , 8911-8916. https://doi.org/10.1103/physrevb.43.8911

Identifiers

DOI
10.1103/physrevb.43.8911