Abstract
Native point defects in anatase $\mathrm{Ti}{\mathrm{O}}_{2}$ are investigated by using first-principles pseudopotential calculations based on density-functional theory (DFT). Antisite defects, namely, Ti-antisite $({\mathrm{Ti}}_{\mathrm{O}})$ and O-antisite $({\mathrm{O}}_{\mathrm{Ti}})$, have high formation energies and are hence unstable. In contrast, all other fundamental native defects (${\mathrm{Ti}}_{i}$, ${\mathrm{O}}_{i}$, ${V}_{\mathrm{Ti}}$, and ${V}_{\mathrm{O}}$) have low formation energies. In particular, titanium interstitial $({\mathrm{Ti}}_{i})$ is a quadruple donor defect with lowest formation energy in $p$-type samples, whereas Ti vacancy $({V}_{\mathrm{Ti}})$ is a quadruple acceptor defect with lowest formation energy in $n$-type samples. Interstitial oxygen $({\mathrm{O}}_{i})$ would spontaneously and strongly bind to lattice oxygen, resulting in a neutral ${\mathrm{O}}_{2}$ dimer substituting on one O site. None of the four low-energy defects have energy levels inside the DFT band gap.
Keywords
Affiliated Institutions
Related Publications
Observation of Two-Dimensional Phases Associated with Defect States on the Surface of Ti<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
Surface electronic states associated with defects produced by Ar-ion bombardment of Ti${\mathrm{O}}_{2}$ crystals have been studied by ultraviolet-photoemission, electron-energy...
Magnetic structure of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">V</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>in the insulating phase
A phase diagram for all the possible collinear spin arrangements for ${\mathrm{V}}_{2}$${\mathrm{O}}_{3}$ is derived within the atomic limit. Due to the fact that the ${a}_{1g}$...
Final-state effects in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>3</mml:mn><mml:mi>d</mml:mi></mml:math>photoelectron spectrum of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>and comparison with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Fe</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:math>
Photoelectron-spin-polarization measurements with photon energies up to 11 eV on ${\mathrm{Fe}}_{3}$${\mathrm{O}}_{4}$ and energy distribution curves in the photon energy range ...
Effect of nonparabolicity in GaAs/<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ga</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mi mathvariant="normal">−</mml:mi><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Al</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>As semiconductor quantum wells
We investigate the effect of nonparabolicity in various bands of bulk semiconductors on the electronic-subband-edge energies in quantum wells. We compare the results from differ...
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Publication Info
- Year
- 2006
- Type
- article
- Volume
- 73
- Issue
- 12
- Citations
- 383
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.73.125205