From Stein's Unbiased Risk Estimates to the Method of Generalized Cross Validation

1985 The Annals of Statistics 154 citations

Abstract

This paper concerns the method of generalized cross validation (GCV), a promising way of choosing between linear estimates. Based on Stein estimates and the associated unbiased risk estimates (Stein, 1981), a new approach to GCV is developed. Many consistency results are obtained for the cross-validated (Steinized) estimates in the contexts of nearest-neighbor nonparametric regression, model selection, ridge regression, and smoothing splines. Moreover, the associated Stein's unbiased risk estimate is shown to be uniformly consistent in assessing the true loss (not the risk). Consistency properties are examined as well when the sampling error is unknown. Finally, we propose a variant of GCV to handle the case that the dimension of the raw data is known to be greater than that of their expected values.

Keywords

MathematicsConsistency (knowledge bases)Cross-validationUnbiased EstimationStatisticsSmoothingRegressionDimension (graph theory)Nonparametric regressionEconometricsCombinatoricsEstimatorDiscrete mathematics

Related Publications

Publication Info

Year
1985
Type
article
Volume
13
Issue
4
Citations
154
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

154
OpenAlex

Cite This

Ker-Chau Li (1985). From Stein's Unbiased Risk Estimates to the Method of Generalized Cross Validation. The Annals of Statistics , 13 (4) . https://doi.org/10.1214/aos/1176349742

Identifiers

DOI
10.1214/aos/1176349742