Heteroepitaxial graphite on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>6</mml:mn><mml:mi>H</mml:mi><mml:mo>−</mml:mo><mml:mi mathvariant="normal">SiC</mml:mi><mml:mn/><mml:mo>(</mml:mo><mml:mn>0001</mml:mn><mml:mo>)</mml:mo><mml:mo>:</mml:mo></mml:math> Interface formation through conduction-band electronic structure

1998 Physical review. B, Condensed matter 682 citations

Abstract

When annealed at elevated temperatures under vacuum, silicon carbide surfaces show a tendency towards graphitization. Using the sensitivity of empty conduction-band states dispersion towards the structural quality of the overlayer, we have used angular-resolved inverse photoemission spectroscopy (KRIPES) to monitor the progressive formation of crystalline graphite on $6H\ensuremath{-}\mathrm{SiC}(0001)$ surfaces. The KRIPES spectra obtained after annealing at 1400 \ifmmode^\circ\else\textdegree\fi{}C are characteristic of azimuthally oriented, graphite multilayers of very good single-crystalline quality. For lower annealing temperatures, the ordered interface already presents most of the fingerprints of graphite as soon as 1080 \ifmmode^\circ\else\textdegree\fi{}C. The observation of unshifted ${\ensuremath{\pi}}^{*}$ states, which reveals a very weak interaction with the substrate, is consistent with the growth of a van der Waals heteroepitaxial graphite lattice on top of silicon carbide, with a coincidence lattice of $(6\sqrt{3}\ifmmode\times\else\texttimes\fi{}6\sqrt{3})R30\ifmmode^\circ\else\textdegree\fi{}$ symmetry. The growth of the first graphene sheet proceeds on top of adatoms characteristic of the $(\sqrt{3}\ifmmode\times\else\texttimes\fi{}\sqrt{3})R30\ifmmode^\circ\else\textdegree\fi{}$ reconstruction. These adatoms reduce the chemical reactivity of the substrate. A strong feature located at 6.5 eV above the Fermi level is attributed to states derived from Si vacancies in the C-rich subsurface layers of the SiC substrate. This strongly perturbed substrate can be viewed as a diamondlike phase which acts as a precursor to graphite formation by collapse of several layers. In this framework, previously published soft x-ray photoemission spectra find a natural explanation.

Keywords

GraphiteOverlayerMaterials scienceAnnealing (glass)Lattice (music)CrystallographyInverseCondensed matter physicsPhysicsChemistryGeometry

Affiliated Institutions

Related Publications

Publication Info

Year
1998
Type
article
Volume
58
Issue
24
Pages
16396-16406
Citations
682
Access
Closed

Citation Metrics

682
OpenAlex
12
Influential
637
CrossRef

Cite This

I. Forbeaux, J.-M. Themlin, J.M. Debever (1998). Heteroepitaxial graphite on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>6</mml:mn><mml:mi>H</mml:mi><mml:mo>−</mml:mo><mml:mi mathvariant="normal">SiC</mml:mi><mml:mn/><mml:mo>(</mml:mo><mml:mn>0001</mml:mn><mml:mo>)</mml:mo><mml:mo>:</mml:mo></mml:math> Interface formation through conduction-band electronic structure. Physical review. B, Condensed matter , 58 (24) , 16396-16406. https://doi.org/10.1103/physrevb.58.16396

Identifiers

DOI
10.1103/physrevb.58.16396

Data Quality

Data completeness: 77%