Abstract
Several improvements of the tetrahedron method for Brillouin-zone integrations are presented. (1) A translational grid of k points and tetrahedra is suggested that renders the results for insulators identical to those obtained with special-point methods with the same number of k points. (2) A simple correction formula goes beyond the linear approximation of matrix elements within the tetrahedra and also improves the results for metals significantly. For a required accuracy this reduces the number of k points by orders of magnitude. (3) Irreducible k points and tetrahedra are selected by a fully automated procedure, requiring as input only the space-group operations. (4) The integration is formulated as a weighted sum over irreducible k points with integration weights calculated using the tetrahedron method once for a given band structure. This allows an efficient use of the tetrahedron method also in plane-wave-based electronic-structure methods.
Keywords
Affiliated Institutions
Related Publications
Phonon Spectrum of Graphite
The phonon spectrum of reactor grade graphite is computed by means of the essentially exact root sampling technique for a sampling 47 788 points in an irreducible segment of the...
Special Points in the Brillouin Zone
We present sets of special points in the Brillouin zone from which the average over the Brillouin zone of a periodic function of wave vector (e.g., energy, charge density, dipol...
Electronic structure of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoS</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">WSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>. II. The nature of the optical band gaps
From band-structure calculations it is shown that MoSe2, MoS2, and WSe2 are indirect-gap semiconductors. The top of the valence band is at the Γ point and the bottom of the cond...
Phonon-phonon interactions in transition metals
In this paper the phonon self energy produced by anharmonicity is calculated\nusing second order many body perturbation theory for all bcc, fcc and hcp\ntransition metals. The s...
Valley-selective circular dichroism of monolayer molybdenum disulphide
A two-dimensional honeycomb lattice harbours a pair of inequivalent valleys in the k-space electronic structure, in the vicinities of the vertices of a hexagonal Brillouin zone,...
Publication Info
- Year
- 1994
- Type
- article
- Volume
- 49
- Issue
- 23
- Pages
- 16223-16233
- Citations
- 6974
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.49.16223