Abstract

All-solid-state batteries (ASSBs) have attracted enormous attention as one of the critical future technologies for safe and high energy batteries. With the emergence of several highly conductive solid electrolytes in recent years, the bottleneck is no longer Li-ion diffusion within the electrolyte. Instead, many ASSBs are limited by their low Coulombic efficiency, poor power performance, and short cycling life due to the high resistance at the interfaces within ASSBs. Because of the diverse chemical/physical/mechanical properties of various solid components in ASSBs as well as the nature of solid-solid contact, many types of interfaces are present in ASSBs. These include loose physical contact, grain boundaries, and chemical and electrochemical reactions to name a few. All of these contribute to increasing resistance at the interface. Here, we present the distinctive features of the typical interfaces and interphases in ASSBs and summarize the recent work on identifying, probing, understanding, and engineering them. We highlight the complicated, but important, characteristics of interphases, namely the composition, distribution, and electronic and ionic properties of the cathode-electrolyte and electrolyte-anode interfaces; understanding these properties is the key to designing a stable interface. In addition, conformal coatings to prevent side reactions and their selection criteria are reviewed. We emphasize the significant role of the mechanical behavior of the interfaces as well as the mechanical properties of all ASSB components, especially when the soft Li metal anode is used under constant stack pressure. Finally, we provide full-scale (energy, spatial, and temporal) characterization methods to explore, diagnose, and understand the dynamic and buried interfaces and interphases. Thorough and in-depth understanding on the complex interfaces and interphases is essential to make a practical high-energy ASSB.

Keywords

ChemistryElectrolyteFast ion conductorSolid-stateChemical engineeringNanotechnologyPhysical chemistryElectrode

Affiliated Institutions

Related Publications

Before Li Ion Batteries

This Review covers a sequence of key discoveries and technical achievements that eventually led to the birth of the lithium-ion battery. In doing so, it not only sheds light on ...

2018 Chemical Reviews 2006 citations

Publication Info

Year
2020
Type
review
Volume
120
Issue
14
Pages
6878-6933
Citations
1236
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1236
OpenAlex

Cite This

Abhik Banerjee, Xuefeng Wang, Chengcheng Fang et al. (2020). Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chemical Reviews , 120 (14) , 6878-6933. https://doi.org/10.1021/acs.chemrev.0c00101

Identifiers

DOI
10.1021/acs.chemrev.0c00101