Abstract

Mutant alpha(1)-antitrypsin Z (alpha(1)-ATZ) protein, which has a tendency to form aggregated polymers as it accumulates within the endoplasmic reticulum of the liver cells, is associated with the development of chronic liver injury and hepatocellular carcinoma in hereditary alpha(1)-antitrypsin (alpha(1)-AT) deficiency. Previous studies have suggested that efficient intracellular degradation of alpha(1)-ATZ is correlated with protection from liver disease in alpha(1)-AT deficiency and that the ubiquitin-proteasome system accounts for a major route, but not the sole route, of alpha(1)-ATZ disposal. Yet another intracellular degradation system, autophagy, has also been implicated in the pathophysiology of alpha(1)-AT deficiency. To provide genetic evidence for autophagy-mediated disposal of alpha(1)-ATZ, here we used cell lines deleted for the Atg5 gene that is necessary for initiation of autophagy. In the absence of autophagy, the degradation of alpha(1)-ATZ was retarded, and the characteristic cellular inclusions of alpha(1)-ATZ accumulated. In wild-type cells, colocalization of the autophagosomal membrane marker GFP-LC3 and alpha(1)-ATZ was observed, and this colocalization was enhanced when clearance of autophagosomes was prevented by inhibiting fusion between autophagosome and lysosome. By using a transgenic mouse with liver-specific inducible expression of alpha(1)-ATZ mated to the GFP-LC3 mouse, we also found that expression of alpha(1)-ATZ in the liver in vivo is sufficient to induce autophagy. These data provide definitive evidence that autophagy can participate in the quality control/degradative pathway for alpha(1)-ATZ and suggest that autophagic degradation plays a fundamental role in preventing toxic accumulation of alpha(1)-ATZ.

Keywords

AutophagyATG5Endoplasmic reticulumIntracellularCell biologyAutophagosomeEndoplasmic-reticulum-associated protein degradationLysosomeChemistryColocalizationBiologyMolecular biologyBiochemistryUnfolded protein responseApoptosisEnzyme

MeSH Terms

AnimalsAutophagyAutophagy-Related Protein 5CellsCulturedEndoplasmic ReticulumInclusion BodiesMiceMicrotubule-Associated ProteinsMutationalpha 1-Antitrypsin

Affiliated Institutions

Related Publications

Publication Info

Year
2005
Type
article
Volume
281
Issue
7
Pages
4467-4476
Citations
255
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

255
OpenAlex
7
Influential
218
CrossRef

Cite This

Takahiro Kamimoto, Shisako Shoji, Tunda Hidvegi et al. (2005). Intracellular Inclusions Containing Mutant α1-Antitrypsin Z Are Propagated in the Absence of Autophagic Activity. Journal of Biological Chemistry , 281 (7) , 4467-4476. https://doi.org/10.1074/jbc.m509409200

Identifiers

DOI
10.1074/jbc.m509409200
PMID
16365039

Data Quality

Data completeness: 86%