Abstract
This paper presents a set of multi-gas mitigation scenarios that aim for stabilisation of greenhouse gas radiative forcing in 2150 at levels from 3.7 to 5.3 W/m2. At the moment, non-CO2 gasses (methane, nitrous oxide, PFCs, HFCs and SF6) contribute to about a quarter of the global emissions. The analysis shows that including these non-CO2 gases in mitigation analysis is crucial in formulating a cost-effective response. For stabilisation at 4.5 W/m2, a multi-gas approach leads to 40% lower costs than an approach that would focus at CO2-only. Within the assumptions used in this study, the non-CO2 gasses contribution to total reduction is very large under less stringent targets (up to 60%), but declines under stringent targets. While stabilising at 3.7 W/m2 obviously leads to larger environmental benefits than the 4.5 W/m2 case (temperature increase in 2100 are 1.9 and 2.3oC, respectively), the costs of the lower target are higher (0.80% and 0.34% of GDP in 2100, respectively). Improving knowledge on how future reduction potential for non-CO2 gasses could develop is shown to be a crucial research question.
Keywords
Affiliated Institutions
Related Publications
Climate Change and Food Systems
Food systems contribute 19%–29% of global anthropogenic greenhouse gas (GHG) emissions, releasing 9,800–16,900 megatonnes of carbon dioxide equivalent (MtCO 2 e) in 2008. Agricu...
Low-temperature Rosseland opacities
view Abstract Citations (1130) References (75) Co-Reads Similar Papers Volume Content Graphics Metrics Export Citation NASA/ADS Low-Temperature Rosseland Opacities Alexander, D....
Risk‐based selection from the general population in a screening trial: Selection criteria, recruitment and power for the Dutch‐Belgian randomised lung cancer multi‐slice CT screening trial (NELSON)
Abstract A method to obtain the optimal selection criteria, taking into account available resources and capacity and the impact on power, is presented for the Dutch‐Belgian rand...
Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand
The global impact of COVID-19 has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 H1N1 influenza pandemi...
Planetary Boundaries: Exploring the Safe Operating Space for Humanity
"Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustain...
Publication Info
- Year
- 2006
- Type
- article
- Volume
- 27
- Issue
- 3_suppl
- Pages
- 201-234
- Citations
- 156
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.5547/issn0195-6574-ej-volsi2006-nosi3-10