Abstract

A new special point in the Brillouin zone is introduced. It is defined as the point such that the value which any given periodic function of wave vector assumes at this point is an excellent approximation to the average value of the same function throughout the Brillouin zone. This special point is termed the "mean-value point," and is dictated by the crystal symmetry. The coordinates of the mean-value point for cubic lattices are explicitly given.

Keywords

Brillouin zonePoint (geometry)Value (mathematics)Function (biology)PhysicsSymmetry (geometry)Mathematical analysisMean valueMathematicsCondensed matter physicsGeometryStatistics

Related Publications

First-Principles Determination of the Soft Mode in Cubic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>ZrO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

A direct approach to calculate the phonon dispersion using an ab initio force constant method is introduced. The phonon dispersion and structural instability of cubic ${\mathrm{...

1997 Physical Review Letters 2708 citations

Publication Info

Year
1973
Type
article
Volume
7
Issue
12
Pages
5212-5215
Citations
926
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

926
OpenAlex

Cite This

A. Baldereschi (1973). Mean-Value Point in the Brillouin Zone. Physical review. B, Solid state , 7 (12) , 5212-5215. https://doi.org/10.1103/physrevb.7.5212

Identifiers

DOI
10.1103/physrevb.7.5212