Abstract
Nitric oxide generation in brain cytosolic fractions markedly enhances ADP-ribosylation of a single 37-kDa protein. By utilizing a biotinylated NAD and avidin affinity chromatography, we purified this protein. Partial amino acid sequencing establishes its identity as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This is further confirmed by detection of GAPDH enzymatic activity in the purified 37-kDa protein. GAPDH is ADP-ribosylated in the absence of brain extract. This auto-ADP-ribosylation is enhanced by nitric oxide generation. ADP-ribosylation appears to involve the cysteine where NAD interacts with GAPDH so that ADP-ribosylation likely inhibits enzymatic activity. Such inhibition may play a role in nitric oxide-mediated neurotoxicity.
Keywords
Affiliated Institutions
Related Publications
Autophosphorylation activates the soluble cytoplasmic domain of the insulin receptor in an intermolecular reaction
The cytoplasmic protein-tyrosine kinase domain of the insulin receptor (residues 959-1355) has been expressed as a soluble protein in Sf9 insect cells via a Baculovirus expressi...
Reversible Inactivation of the Tumor Suppressor PTEN by H2O2
The tumor suppressor PTEN regulates cell migration, growth, and survival by removing the 3'-phosphate of phosphoinositides. Exposure of purified PTEN or of cells to H(2)O(2) res...
Publication Info
- Year
- 1992
- Type
- article
- Volume
- 89
- Issue
- 20
- Pages
- 9382-9385
- Citations
- 285
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1073/pnas.89.20.9382