Abstract

We find the minimum distances of the binary <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(113, 57)</tex> , and ternary <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(37, 19), (61, 31), (71, 36)</tex> , and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(73, 37)</tex> quadratic residue codes and the corresponding extended codes. These distances are <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">15, 10, 11, 17</tex> , and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">17</tex> , respectively, for the nonextended codes and are increased by one for the respective extended codes. We also characterize the minimum weight codewords for the <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(113, 57)</tex> binary code and its extended counterpart.

Keywords

Binary numberQuadratic equationTernary operationCode (set theory)Computer scienceCombinatoricsDiscrete mathematicsMathematicsAlgorithmArithmeticProgramming language

Affiliated Institutions

Related Publications

Maximum distanceq-nary codes

A <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</tex> -nary error-correcting code with <tex xmlns:mml="http://www.w3.org/1998/...

1964 IEEE Transactions on Information Theory 508 citations

Low-density parity-check codes

A low-density parity-check code is a code specified by a parity-check matrix with the following properties: each column contains a small fixed number <tex xmlns:mml="http://www....

1962 IEEE Transactions on Information Theory 10397 citations

Publication Info

Year
1984
Type
article
Volume
30
Issue
2
Pages
407-411
Citations
32
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

32
OpenAlex

Cite This

Don Coppersmith, G. Seroussi (1984). On the minimum distance of some quadratic residue codes (Corresp.). IEEE Transactions on Information Theory , 30 (2) , 407-411. https://doi.org/10.1109/tit.1984.1056861

Identifiers

DOI
10.1109/tit.1984.1056861