Abstract

Genome sequencing projects are producing linear amino acid sequences, but full understanding of the biological role of these proteins will require knowledge of their structure and function. Although experimental structure determination methods are providing high-resolution structure information about a subset of the proteins, computational structure prediction methods will provide valuable information for the large fraction of sequences whose structures will not be determined experimentally. The first class of protein structure prediction methods, including threading and comparative modeling, rely on detectable similarity spanning most of the modeled sequence and at least one known structure. The second class of methods, de novo or ab initio methods, predict the structure from sequence alone, without relying on similarity at the fold level between the modeled sequence and any of the known structures. In this Viewpoint, we begin by describing the essential features of the methods, the accuracy of the models, and their application to the prediction and understanding of protein function, both for single proteins and on the scale of whole genomes. We then discuss the important role that protein structure prediction methods play in the growing worldwide effort in structural genomics.

Keywords

Structural genomicsThreading (protein sequence)Computational biologyProtein structure databaseProtein structure predictionGenomicsProtein function predictionSequence (biology)Protein structureComputer scienceGenomeSimilarity (geometry)Structural similaritySequence alignmentLoop modelingProtein methodsBiologySequence analysisPeptide sequenceArtificial intelligenceProtein functionGeneticsGeneSequence database

Affiliated Institutions

Related Publications

Touring protein fold space with Dali/FSSP

The FSSP database and its new supplement, the Dali Domain Dictionary, present a continuously updated classification of all known 3D protein structures. The classification is der...

1998 Nucleic Acids Research 667 citations

Publication Info

Year
2001
Type
article
Volume
294
Issue
5540
Pages
93-96
Citations
1594
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1594
OpenAlex

Cite This

David Baker, Andrej Šali (2001). Protein Structure Prediction and Structural Genomics. Science , 294 (5540) , 93-96. https://doi.org/10.1126/science.1065659

Identifiers

DOI
10.1126/science.1065659