Abstract

Consider a system rendered unstable by both quantum tunneling and thermodynamic fluctuation. The tunneling rate $\ensuremath{\Gamma}$, at temperature ${\ensuremath{\beta}}^{\ensuremath{-}1}$, is related to the free energy $F$ by $\ensuremath{\Gamma}=(\frac{2}{\ensuremath{\hbar}})\mathrm{Im}F$. However, the classical escape rate is $\ensuremath{\Gamma}=(\frac{\ensuremath{\omega}\ensuremath{\beta}}{\ensuremath{\pi}})\mathrm{Im}F$, $\ensuremath{-}{\ensuremath{\omega}}^{2}$ being the negative eigenvalue at the saddle point. A general theory of metastability is constructed in which these formulas are true for temperatures, respectively, below and above $\frac{\ensuremath{\omega}\ensuremath{\hbar}}{2\ensuremath{\pi}}$ with a narrow transition region of $O({\ensuremath{\hbar}}^{\frac{3}{2}})$.

Keywords

OmegaPhysicsMetastabilityQuantum tunnellingEnergy (signal processing)Saddle pointQuantum mechanicsCondensed matter physics

Affiliated Institutions

Related Publications

Flicker (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:mfrac></mml:math>) noise: Equilibrium temperature and resistance fluctuations

We have measured the $\frac{1}{f}$ voltage noise in continuous metal films. At room temperature, samples of pure metals and bismuth (with a carrier density smaller by ${10}^{5}$...

1976 Physical review. B, Solid state 485 citations

Publication Info

Year
1981
Type
article
Volume
46
Issue
6
Pages
388-391
Citations
623
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

623
OpenAlex

Cite This

Ian Affleck (1981). Quantum-Statistical Metastability. Physical Review Letters , 46 (6) , 388-391. https://doi.org/10.1103/physrevlett.46.388

Identifiers

DOI
10.1103/physrevlett.46.388