Abstract
A theory for single-molecule fluorescence detection is developed and then used to analyze data from subpicomolar solutions of B-phycoerythrin (PE). The distribution of detected counts is the convolution of a Poissonian continuous background with bursts arising from the passage of individual fluorophores through the focused laser beam. The autocorrelation function reveals single-molecule events and provides a criterion for optimizing experimental parameters. The transit time of fluorescent molecules through the 120-fl imaged volume was 800 microseconds. The optimal laser power (32 mW at 514.5 nm) gave an incident intensity of 1.8 x 10(23) photons.cm-2.s-1, corresponding to a mean time of 1.1 ns between absorptions. The mean incremental count rate was 1.5 per 100 microseconds for PE monomers and 3.0 for PE dimers above a background count rate of 1.0. The distribution of counts and the autocorrelation function for 200 fM monomer and 100 fM dimer demonstrate that single-molecule detection was achieved. At this concentration, the mean occupancy was 0.014 monomer molecules in the probed volume. A hard-wired version of this detection system was used to measure the concentration of PE down to 1 fM. This single-molecule counter is 3 orders of magnitude more sensitive than conventional fluorescence detection systems.
Keywords
Affiliated Institutions
Related Publications
Probing Individual Molecules with Confocal Fluorescence Microscopy
Confocal fluorescence microscopy coupled with a diffraction-limited laser beam and a high-efficiency detection system has been used to study the diffusive movement and emission ...
Single-Molecule Fluorescence Analysis in Solution
Over the past five years, several groups have developed the capability to detect and identify single fluorescent molecules in solution as the molecules flow through a focused la...
Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor.
We extend the sensitivity of fluorescence resonance energy transfer (FRET) to the single molecule level by measuring energy transfer between a single donor fluorophore and a sin...
Imaging of single molecule diffusion.
In recent years observations at the level of individual atoms and molecules became possible by microscopy and spectroscopy. Imaging of single fluorescence molecules has been ach...
Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals
To explore the relationship between local electromagnetic field enhancement and the large SERS (surface enhanced Raman scattering) enhancement that enables the observation of si...
Publication Info
- Year
- 1989
- Type
- article
- Volume
- 86
- Issue
- 11
- Pages
- 4087-4091
- Citations
- 173
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1073/pnas.86.11.4087