Abstract
The stability to interactions and disorder of the quantum spin Hall effect\n(QSHE) proposed for time-reversal-invariant 2D systems is discussed. The QSHE\nrequires an energy gap in the bulk and gapless edge modes that conduct spin-up\nand spin-down excitations in opposite directions. When the number of Kramers\npairs of edge modes is odd, certain one-particle scattering processes are\nforbidden due to a topological $\\mathbb{Z}_2$ index. We show that in a\nmany-body description, there are other scattering processes that can localize\nthe edge modes and destroy the QSHE: the region of stability for both classes\nof models (even or odd number of Kramers pairs) is obtained explicitly in the\nchiral boson theory. For a single Kramers pair the QSHE is stable to weak\ninteractions and disorder, while for two Kramers pairs it is not; however, the\ntwo-pair case can be stabilized by {\\it either} finite attractive or repulsive\ninteractions. For the simplest case of a single pair of edge modes, it is shown\nthat changing the screening length in an edge with screened Coulomb\ninteractions can be used to drive a phase transition between the QSHE state and\nthe ordinary insulator.\n
Keywords
Affiliated Institutions
Related Publications
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>Topological Order and the Quantum Spin Hall Effect
The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge st...
General theorem relating the bulk topological number to edge states in two-dimensional insulators
We prove a general theorem on the relation between the bulk topological quantum number and the edge states in two dimensional insulators. It is shown that whenever there is a to...
Magnetic dynamics of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi mathvariant="normal">−</mml:mi><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ba</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
High-energy inelastic neutron scattering is used to resolve spin waves in ${\mathrm{La}}_{2}$${\mathrm{CuO}}_{4}$. The corresponding long-wavelength velocity is 0.85\ifmmode\pm\...
Interplay between the magnetic and transport properties in the III-V diluted magnetic semiconductor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ga</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mi>−</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Mn</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mi mathvariant="normal">As</mml:mi></mml:math>
Using a low-temperature molecular-beam epitaxy growth procedure, ${\mathrm{Ga}}_{1\ensuremath{-}x}{\mathrm{Mn}}_{x}\mathrm{As}$ --- a III-V diluted magnetic semiconductor --- is...
Core-level photoemission study of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ga</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mi>−</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Mn</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mi mathvariant="normal">As</mml:mi></mml:math>
We have studied the electronic structure of Mn impurities in GaAs by Mn 2p core-level photoemission spectroscopy. From cluster-model analysis assuming the neutral (Mn3+) or nega...
Publication Info
- Year
- 2006
- Type
- article
- Volume
- 73
- Issue
- 4
- Citations
- 559
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.73.045322