Stability of the quantum spin Hall effect: Effects of interactions, disorder, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>topology

2006 Physical Review B 559 citations

Abstract

The stability to interactions and disorder of the quantum spin Hall effect\n(QSHE) proposed for time-reversal-invariant 2D systems is discussed. The QSHE\nrequires an energy gap in the bulk and gapless edge modes that conduct spin-up\nand spin-down excitations in opposite directions. When the number of Kramers\npairs of edge modes is odd, certain one-particle scattering processes are\nforbidden due to a topological $\\mathbb{Z}_2$ index. We show that in a\nmany-body description, there are other scattering processes that can localize\nthe edge modes and destroy the QSHE: the region of stability for both classes\nof models (even or odd number of Kramers pairs) is obtained explicitly in the\nchiral boson theory. For a single Kramers pair the QSHE is stable to weak\ninteractions and disorder, while for two Kramers pairs it is not; however, the\ntwo-pair case can be stabilized by {\\it either} finite attractive or repulsive\ninteractions. For the simplest case of a single pair of edge modes, it is shown\nthat changing the screening length in an edge with screened Coulomb\ninteractions can be used to drive a phase transition between the QSHE state and\nthe ordinary insulator.\n

Keywords

PhysicsSpin (aerodynamics)Quantum mechanicsCondensed matter physicsGapless playbackCoulombScatteringTopological insulatorElectron

Affiliated Institutions

Related Publications

Magnetic dynamics of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi mathvariant="normal">−</mml:mi><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ba</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

High-energy inelastic neutron scattering is used to resolve spin waves in ${\mathrm{La}}_{2}$${\mathrm{CuO}}_{4}$. The corresponding long-wavelength velocity is 0.85\ifmmode\pm\...

1989 Physical Review Letters 282 citations

Publication Info

Year
2006
Type
article
Volume
73
Issue
4
Citations
559
Access
Closed

External Links

Citation Metrics

559
OpenAlex

Cite This

Cenke Xu, Joel E. Moore (2006). Stability of the quantum spin Hall effect: Effects of interactions, disorder, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>topology. Physical Review B , 73 (4) . https://doi.org/10.1103/physrevb.73.045322

Identifiers

DOI
10.1103/physrevb.73.045322