Abstract
If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are structure diagrams for primitive Boolean algebras, call a homomorphism <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> onto <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <italic>right-strong</italic> iff whenever <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x upper T f left-parenthesis t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mi>T</mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">xTf(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there is an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding="application/x-tex">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis s right-parenthesis equals x"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">f(s) = x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s upper S t"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mi>S</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">sSt</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; let <italic>RSE</italic> denote the category of diagrams and onto right-strong homomorphisms. The relation “<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> structures <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper B"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">B</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {B}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>” between diagrams and Boolean algebras induces a 1-1 correspondence between the components of <italic>RSE</italic> and the isomorphism types of primitive Boolean algebras. Up to isomorphism, each component of <italic>RSE</italic> contains a unique minimal diagram and a unique maximal tree diagram. The minimal diagrams are like those given in a construction by William Hanf. The construction which is given for producing maximal tree diagrams is recursive; as a result, every diagram <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> structures a Boolean algebra recursive in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Keywords
Related Publications
Entropy for group endomorphisms and homogeneous spaces
Topological entropy <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h Subscript d Baseline left-parenthesis upper T...
A Monte Carlo factoring algorithm with linear storage
We present an algorithm which will factor an integer <italic>n</italic> quite efficiently if the class number <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="ht...
Subspaces of small codimension of finite-dimensional Banach spaces
Given a finite-dimensional Banach space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <...
On the probability that a random ±1-matrix is singular
We report some progress on the old problem of estimating the probability, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" al...
Compressed sensing and best 𝑘-term approximation
Compressed sensing is a new concept in signal processing where one seeks to minimize the number of measurements to be taken from signals while still retaining the information ne...
Publication Info
- Year
- 1975
- Type
- article
- Volume
- 47
- Issue
- 1
- Pages
- 1-9
- Citations
- 6
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1090/s0002-9939-1975-0357269-7