Structure diagrams for primitive Boolean algebras

1975 Proceedings of the American Mathematical Society 6 citations

Abstract

If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are structure diagrams for primitive Boolean algebras, call a homomorphism <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> onto <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <italic>right-strong</italic> iff whenever <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x upper T f left-parenthesis t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mi>T</mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">xTf(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there is an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding="application/x-tex">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis s right-parenthesis equals x"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">f(s) = x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s upper S t"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mi>S</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">sSt</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; let <italic>RSE</italic> denote the category of diagrams and onto right-strong homomorphisms. The relation “<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> structures <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper B"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">B</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {B}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>” between diagrams and Boolean algebras induces a 1-1 correspondence between the components of <italic>RSE</italic> and the isomorphism types of primitive Boolean algebras. Up to isomorphism, each component of <italic>RSE</italic> contains a unique minimal diagram and a unique maximal tree diagram. The minimal diagrams are like those given in a construction by William Hanf. The construction which is given for producing maximal tree diagrams is recursive; as a result, every diagram <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> structures a Boolean algebra recursive in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Keywords

AnnotationAlgorithmComputer scienceType (biology)Semantics (computer science)Artificial intelligenceProgramming languageBiology

Related Publications

Publication Info

Year
1975
Type
article
Volume
47
Issue
1
Pages
1-9
Citations
6
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

6
OpenAlex

Cite This

J. E. Williams (1975). Structure diagrams for primitive Boolean algebras. Proceedings of the American Mathematical Society , 47 (1) , 1-9. https://doi.org/10.1090/s0002-9939-1975-0357269-7

Identifiers

DOI
10.1090/s0002-9939-1975-0357269-7