Abstract

Given a finite-dimensional Banach space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a Euclidean norm on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we study relations between the norm and the Euclidean norm on subspaces of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of small codimension. Then for an operator taking values in a Hilbert space, we deduce an inequality for entropy numbers of the operator and its dual.

Keywords

AlgorithmAnnotationLinear subspaceBanach spaceComputer scienceMathematicsArtificial intelligenceDiscrete mathematicsPure mathematics

Affiliated Institutions

Related Publications

Publication Info

Year
1986
Type
article
Volume
97
Issue
4
Pages
637-642
Citations
124
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

124
OpenAlex

Cite This

Alain Pajor, Nicole Tomczak-Jaegermann (1986). Subspaces of small codimension of finite-dimensional Banach spaces. Proceedings of the American Mathematical Society , 97 (4) , 637-642. https://doi.org/10.1090/s0002-9939-1986-0845980-8

Identifiers

DOI
10.1090/s0002-9939-1986-0845980-8