Abstract

An efficient method is described to handle mesh indexes in multidimensional\nproblems like numerical integration of partial differential equations, lattice\nmodel simulations, and determination of atomic neighbor lists. By creating an\nextended mesh, beyond the periodic unit cell, the stride in memory between\nequivalent pairs of mesh points is independent of their position within the\ncell. This allows to contract the mesh indexes of all dimensions into a single\nindex, avoiding modulo and other implicit index operations.\n

Keywords

Linear combination of atomic orbitalsBasis setWannier functionWave functionSIESTA (computer program)Basis functionDensity functional theoryStatistical physicsQuantum mechanicsAtomic orbitalLinear scalePhysicsAb initio quantum chemistry methodsElectronMolecule

Affiliated Institutions

Related Publications

Publication Info

Year
2002
Type
article
Volume
14
Issue
11
Pages
2745-2779
Citations
11588
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

11588
OpenAlex

Cite This

José M. Soler, Emilio Artacho, Julian D. Gale et al. (2002). The SIESTA method for<i>ab initio</i>order-<i>N</i>materials simulation. Journal of Physics Condensed Matter , 14 (11) , 2745-2779. https://doi.org/10.1088/0953-8984/14/11/302

Identifiers

DOI
10.1088/0953-8984/14/11/302